• Title/Summary/Keyword: 오차평가기법

Search Result 656, Processing Time 0.034 seconds

Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches (GOCI 위성영상과 기계학습을 이용한 한반도 연안 수질평가지수 추정)

  • Jang, Eunna;Im, Jungho;Ha, Sunghyun;Lee, Sanggyun;Park, Young-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.221-234
    • /
    • 2016
  • In Korea, most industrial parks and major cities are located in coastal areas, which results in serious environmental problems in both coastal land and ocean. In order to effectively manage such problems especially in coastal ocean, water quality should be monitored. As there are many factors that influence water quality, the Korean Government proposed an integrated Water Quality Index (WQI) based on in situmeasurements of ocean parameters(bottom dissolved oxygen, chlorophyll-a concentration, secchi disk depth, dissolved inorganic nitrogen, and dissolved inorganic phosphorus) by ocean division identified based on their ecological characteristics. Field-measured WQI, however, does not provide spatial continuity over vast areas. Satellite remote sensing can be an alternative for identifying WQI for surface water. In this study, two schemes were examined to estimate coastal WQI around Korea peninsula using in situ measurements data and Geostationary Ocean Color Imager (GOCI) satellite imagery from 2011 to 2013 based on machine learning approaches. Scheme 1 calculates WQI using estimated water quality-related factors using GOCI reflectance data, and scheme 2 estimates WQI using GOCI band reflectance data and basic products(chlorophyll-a, suspended sediment, colored dissolved organic matter). Three machine learning approaches including Random Forest (RF), Support Vector Regression (SVR), and a modified regression tree(Cubist) were used. Results show that estimation of secchi disk depth produced the highest accuracy among the ocean parameters, and RF performed best regardless of water quality-related factors. However, the accuracy of WQI from scheme 1 was lower than that from scheme 2 due to the estimation errors inherent from water quality-related factors and the uncertainty of bottom dissolved oxygen. In overall, scheme 2 appears more appropriate for estimating WQI for surface water in coastal areas and chlorophyll-a concentration was identified the most contributing factor to the estimation of WQI.

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

Runoff Analysis for Weak Rainfall Event in Urban Area Using High-ResolutionSatellite Imagery (고해상도 위성영상을 이용한 도시유역의 소강우 유출해석)

  • Kim, Jin-Young;An, Kyoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2011
  • In this research, enhanced land-cover classification methods using high-resolution satellite image (HRSI) and GIS in terms of practicality and accuracy was proposed. It aims for understanding non-point pollutant origin/loading, assessment the efficiency of rainfall storage/infiltration facilities and sounds water-environment management. The result of applying enhanced land-cover classification methods to the urban region verifies that roof and road area are including various vegetations such as roof garden, flower bed in the median strip and street tree. This accounts for 3% of total study area, and more importantly it was counted as impervious area by GIS alone or conventional indoor work. The feasibility of the method was assessed by applying to rainfall-runoff analysis for three weak rainfall in the range of 7.1-10.5 mm events in 2000, Chiba, Japan. A good agreement between simulated and observed runoff hydrograph was obtained. In comparison, the hydrograph simulated with land-use parameters by the detailed land-use information of 10m grid had an error between 31%~71%, while enhanced method showed 4% to 29%, and showed the improvement particularly for reproducing observed peak and recession flow rate of hydrograph in weak rainfall condition.

Determination of Dose Correction Factor for Energy and Directional Dependence of the MOSFET Dosimeter in an Anthropomorphic Phantom (인형 모의피폭체내 MOSFET 선량계의 에너지 및 방향 의존도를 고려하기 위한 선량보정인자 결정)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Na, Seong-Ho;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy Photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for $^{60}Co$ and $^{137}Cs$ photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom.

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

Validation of OMI HCHO with EOF and SVD over Tropical Africa (EOF와 SVD을 이용한 아프리카 지역에서 관측된 OMI HCHO 자료의 검증)

  • Kim, J.H.;Baek, K.H.;Kim, S.M.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • We have found an error in the operational OMI HCHO columns, and corrected it by applying a background parameterization derived on a 4th order polynomial fit to the time series of monthly average OMI HCHO data. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. A new scientific approach, statistical analyses with EOF and SVD, was adapted to reanalyze the consistency of the corrected OMI HCHO with other satellite measurements of HCHO, CO, $NO_2$, and fire counts over Africa. The EOF and SVD analyses with MOPITT CO, OMI $NO_2$, SCIAMAHCY, and OMI HCHO show the overall spatial and temporal pattern consistent with those of biomass burning over these regions. However, some discrepancies were observed from OMI HCHO over northern equatorial Africa during the northern biomass burning seasons: The maximum HCHO was found further downwind from where maximum fire counts occur and the minimum was found in January when biomass burning is strongest. The statistical analysis revealed that the influence of biogenic activity on HCHO wasn't strong enough to cause the discrepancies, but it is caused by the error in OMI HCHO from using the wrong Air Mass Factor (AMF) associated with biomass burning aerosol. If the error is properly taken into consideration, the biomass burning is the strongest source of HCHO seasonality over the regions. This study suggested that the statistical tools are a very efficient method for evaluating satellite data.

A Study on the Implementation of Ultrasonic Guidance Algorithm for Improving Safety of Ultrasonic Varicose Vein Treatment (초음파 하지정맥류 치료의 안전성 개선을 위한 초음파 유도 알고리즘 구현에 관한 연구)

  • Kim, Seong-Cheol;Kim, Ju-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.435-441
    • /
    • 2018
  • In this study, we performed to design an image guiding algorithm to improve the efficiency and safety of treatment of varicose vein by focused ultrasound. The algorithm was suggested by different guiding images according to the location of varicose veins. In the case of deep-seated varicose veins, the target area was marked on the surface of the blood vessel in the obtained cross-sectional blood vessel ultrasound image. In the case of the superficial varicose vein, A guiding system based on image segmentation algorithm of the vascular region was suggested and designed two different algorithms according to varicose veins progression degree. as a results, the algorithm based on ultrasound image show a small error with $830{\mu}m$ at maximum. However, the algorithm based on charge coupled device image has a maximum error of 8.3 mm in some data. Therefore, it is expected that additional study is needed for superficial varicose vein image guiding algorithm, and it is expected that the accuracy of blood vessel tracking should be evaluated by constructing simple system.

Accuracy Improvement of the ICP DEM Matching (ICP DEM 매칭방법의 정확도 개선)

  • Lee, Hyoseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2015
  • In photogrammetry, GCPs (Ground Control Points) have traditionally been used to determine EOPs (Exterior Orientation Parameters) and to produce DEM (Digital Elevation Model). The existing DEM can be used as GCPs, where the observer’s approach is a difficult area, because it is very restrictive to survey in the field. For this, DEM matching should be performed. This study proposed the fusion method using ICP (Iterative Closest Point) and RT (proposed method by Rosenholm and Torlegard, 1988) in order to improve accuracy of the DEM matching. The proposed method was compared to the ICP method to evaluate its usefulness. Pseudo reference DEM with resolution 10m, and modified DEM (random-numbers are added from 0 to 2 at height; scale is 0.9; translation is 100 meters in 3-D axes; rotation is from 10° to 50° from the reference DEM) were used in the experiment. The results proposed accuracy was highest in the matching and absolute orientation. In the case of ICP, according to rotation of the modified DEM being increased, absolute orientation error is increased, while the proposed method generally showed consistent results without increasing the error. The proposed method would be applied to matching when the DEM is modified up to 30° rotation, compared to the reference DEM, based on the results of experiments. In addition when we use Drone, this method can be utilized to identify EOPs or detect 3-D surface deformation from the existing DEM of the inaccessible area.

Application of Benefit Transfer Method to Estimate the Willingness-to-pay in Planning the Construction of the Integrated Sewerage System at the Catchment Areas of Dams (댐상류지역 하수도시설 확충사업에 관한 지불의사액 추정을 위한 편익전환기법의 적용)

  • Jeong, Dong-Hwan;Jin, Young-Sun;Park, Kyoo-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 2006
  • Benefit transfer is a method, which obtains an estimate for the economic valuation of non-marketed commodities at a given site through the analysis of studies that have been previously carried out to value similar commodities at a different location. The objective of this study was to estimate benefit transfer values for the construction of the integrated sewerage system in the catchment area of dams in Korea. For pooled data analysis, five models were suggested in this study. Among five models, model 2 showed only 6 to 7% errors when the willingness-to-pay(WTP) predicted in the policy-site, Dam Soyang was compared with that estimated using contingent valuation method(CVM) in the study-sites, Dams Namgang, Hapcheon, and Daecheong. However, the WTP estimate predicted by model 1 showed the absolute errors of 42 to 47% when it was compared with WTP estimated using CVM in Dams Andong and Imha. It seemed that residents of Dams Andong and Imha have feeling of being victimized since two dams were constructed very adjacently, the upstream area was designated as drinking water source protection zone, and thereafter their developmental economical actions have been significantly restricted.

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.