• Title/Summary/Keyword: 오존존데

Search Result 10, Processing Time 0.022 seconds

Source of the tropospheric ozone using the ozonesonde data at Pohang (포항오존존데 자료를 이용한 대류권 오존의 기원)

  • 김재환;이상희;김유근
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.75-76
    • /
    • 2002
  • 대기환경에 대한 오존의 영향이 증대되면서 오존에 대환 관심이 증대되었다. 대류권과 성층권에 존재하는 오존은 서로 상반된 영향력을 미치는 것으로 알려져 있다(Lu et al., 1997). 성층권의 오존은 약 25km 부근 상공에서 최고농도대를 형성하며, 태양으로부터 오는 유해자외선을 차단하는 역할을 한다. 그러나, 대류권에서 오존이 고농도로 존재할 경우는 산화제로서 작용하여 인간, 식물을 비롯한 생태계에 영향을 미친다. (중략)

  • PDF

The comparison and observation of Stratospheric ozone using Ozone LIDAR and Ozone sonde in Korean Peninsula (오존라이더와 오존존데의 공동관측을 통한 한반도 성층권 오존 비교)

  • 방소영;조경숙;박기준;최재천;최병철;김성균;김정식;손주형;송동일
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.239-240
    • /
    • 2003
  • 인간활동에 의해 오존이 감소하고 있다는 사실이 1985년 남극지역 전량오존에 관한 보고서로 처음 밝혀진 이후 계속적으로 북극지역과 중위도 지역에서도 동일한 현상이 일어나고 있다고 보고되고 있다(WMO/GAW No.143). 세계기상기구에서는 지상부근의 오존 또는 대기중의 오존전량에 대해서는 1950년대에 처음으로 전지구적차원의 오존관측이 실시되었으며, 1980년대초에 세계기상기구가 발족시킨 전지구오존관측시스템(Global Ozone Observing System, GO$_3$OS)에 의해 전세계적인 관측을 실시하고 있고 있다. (중략)

  • PDF

Intercomparisons of ADEOS/IMG Measurements with the Sonde Observations over Korea (한반도 상공의 ADEOS/IMG 관측 자료와 존데 자료의 비교 분석)

  • 조하만;김주공;오성남
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.253-266
    • /
    • 1999
  • ADEOS(Advanced Earth Observing Satellite)/IMG(Interferometric Monitor for Greenhouse Gases) measurements - temperature, water vapor($H_2O$), ozone($O_3$) have been compared with the radio sonde and ozone sonde observations at Osan and Pohang stations for the 4 cases on 10 Jan.(a), 28 Jan.(b), 2 Apr.(c), and 19 Jun.(d) 1997 to detect the error ranges of the IMG data. It showed that the IMG data of the cases (b), (d) when the ADEOS passed over the central part of Korea were quite stable with the good agreement with the sonde observations, however, that of (a),(c) when the ADEOS passed over south- east coastal area were unstable with the larger differences from the sonde-observations. The RMSE and bias analyses of temperature for the stable cases (b),(d) showed that the differences between the IMG data and the sonde observations were about 1~4 K at the 700~300 hPa level and about 4~5 K or more at the higher level, and the IMG measurements tended to be larger than the sonde observations at the higher level above 200 hPa, while no typical bias was seen at the lower level. The RMSE and bias analysis for the version of level 2 5_6_4_4 of ozone showed that the RMSE of ozone were quite small, in general, except at the higher level above 50~60 hPa in the all 4 cases, however the bias was generally big with the positive value in the troposphere and the negative in the stratosphere. An example of vertical profile of trace gases such as $CO_2, N_2O, CH_4, HNO_3$, CO measured by IMG was also presented and it showed that the IMG data had large differences between the 5 different observation points.

Characteristics of Vertical Ozone Distributions in the Pohang Area, Korea (포항지역 오존의 수직분포 특성)

  • Kim, Ji-Young;Youn, Yong-Hoon;Song, Ki-Bum;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.287-301
    • /
    • 2000
  • In order to investigate the factors and processes affecting the vertical distributions of ozone, we analyzed the ozone profile data measured using ozonesonde from 1995 to 1997 at Pohang city, Korea. In the course of our study, we analyzed temporal and spatial distribution characteristics of ozone at four different heights: surface (100m), troposphere (10km), lower stratosphere (20km), and middle stratosphere (30km). Despite its proximity to a local, but major, industrial complex known as Pohang Iron and Steel Co. (POSCO), the concentrations of surface ozone in the study area were comparable to those typically observed from rural and/or unpolluted area. In addition, the findings of relative enhancement of ozone at this height, especially between spring and summer may be accounted for by the prevalence of photochemical reactions during that period of year. The temporal distribution patterns for both 10 and 20km heights were quite compatible despite large differences in their altitudes with such consistency as spring maxima and summer minima. Explanations for these phenomena may be sought by the mixed effects of various processes including: ozone transport across two heights, photochemical reaction, the formation of inversion layer, and so on. However, the temporal distribution pattern for the middle stratosphere (30km) was rather comparable to that of the surface. We also evaluated total ozone concentration of the study area using Brewer spectrophotometer. The total ozone concentration data were compared with those derived by combining the data representing stratospheric layers via Umkehr method. The results of correlation analysis showed that total ozone is negatively correlated with cloud cover but not with such parameter as UV-B. Based on our study, we conclude that areal characteristics of Pohang which represents a typical coastal area may be quite important in explaining the distribution patterns of ozone not only from surface but also from upper atmosphere.

  • PDF

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation (대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증)

  • Park, Jinkyung;Kim, Seo-Yeon;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

Optimal Estimation (OE) Technique to Retrieve the Ozone Column and Tropospheric Ozone Profile Based on Ground-based MAX-DOAS Measurement (오존전량 및 대류권 오존 프로파일 산출을 위한 지상관측 MAX-DOAS 원시자료 기반의 최적추정(Optimal Estimation) 기술)

  • Park, Junsung;Hong, Hyunkee;Choi, Wonei;Kim, Daewon;Yang, Jiwon;Kang, Hyungwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.191-201
    • /
    • 2018
  • In this present study, we, for the first time, retrieved total column of ozone ($O_3$) and tropospheric ozone vertical profile using the Optimal Estimation (OE) method based on the MAX-DOAS measurement at the Yonsei University in Seoul, Korea. The optical density fitting is carried out using the OE method to calculate ozone columns. The optical density between the MAX-DOAS data obtained by dividing the measured intensities for each viewing elevated angle by those at the zenith angle. The retrieved total columns of the ozone are 375.4 and 412.6 DU in the morning (08:13) and afternoon (17:55) on 23 May, 2017, respectively. In addition, under 10 km altitude, the $O_3$ vertical profile was retrieved with about 5% of retrieval uncertainty. However, above 10 km altitude, the $O_3$ vertical profile retrieval uncertainty was increased (>10%). The spectral fitting errors are 16.8% and 19.1% in the morning and afternoon, respectively. The method suggested in this present study can be useful to measure the total ozone column using the ground-based hyper-spectral UV sensors.

Vertical Ozone Distribution over Seoul: Ozonesonde Measurements During June 6~9, 2003 (서울지역 연직 오존 분포: 2003년 6월 6~9일 오존존데 관측)

  • Hwang, Mi-Kyoung;Kim, Yoo-Keun;Oh, In-Bo;Song, Sang-Keun;Lim, Yun-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.196-205
    • /
    • 2008
  • Variability in vertical ozone and meteorological profiles was measured by 2Z electrochemical concentration cells (ECC) ozonesonde at Bangyi in Seoul ($37.52^{\circ}N$, $127.13^{\circ}E$) during June $6{\sim}9$, 2003 in odor to identify the vertical distribution of ozone and its relationship with the lower-atmospheric structure resulted in the high ozone concentrations near the surface. The eight profiles obtained in the early morning and the late afternoon during the study period clearly showed that the substantial change of ozone concentrations in lower atmosphere(${\sim}5\;km$), indicating that it is tightly coupled to the variation of the planetary boundary layer (PBL) structure as well as the background synoptic flow. All profiles observed early in the morning showed very low ozone concentrations near the surface with strong vertical gradients in the nocturnal stable boundary layer due to the photochemical ozone loss caused by surface NO titration under very weak vertical mixing. On the other hand, relatively uniform ozone profiles in the developed mixing layer and the ozone peaks in the upper PBL, were observed in the late afternoon. It was noted that a significant increase in ozone concentrations in the lower atmosphere occurred with the corresponding decrease of the mixing height in the late afternoon on June 8. Ozone in upper layer did not vertically vary much compared to that in PBL but changed significantly on June 6 that was closely associated with the variation of synoptic flows. Interestingly, heavily polluted ozone layers aloft (a maximum value of 115 ppb around 2 km) were formed early in the morning on 6 through 7 June under dominant westerly synoptic flows. This indicates the effects of the transport of pollutants on regional scale and consequently can give a rise to increase the surface ozone concentration by downward mixing processes enhanced in the afternoon.