• Title/Summary/Keyword: 오존예측

Search Result 95, Processing Time 0.214 seconds

Prediction of $O_3$ Concentration According to the Distribution of Pressure Patterns, Pusan (기압배치 형태별 부산지역 오존농도 예측)

  • 안미정;이동인
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.155-156
    • /
    • 2000
  • 대기오염물질 중 오존은 대기성분 간의 화학반응에 의하여 광화학스모그를 형성하는 주요한 가스로서 지금까지 오존의 생성과 대기오염물질 및 기상과의 상관성을 이용한 오존 예측 연구가 다양하게 이루어져 왔다. 국내에서는 회귀모형을 이용한 오존농도 예측(허정숙등, 1993), 신경회로망을 이용한 오존농도 예측(김용국 등, 1994), Wavelet Transform을 이용한 단기오존농도 예측(김신도, 1998)등이 있고, 국외에서는 단기 오존예측(Feister & Balzer; 1991), 선형모델을 이용한 오존예측(Cox, Chu, 1992), 비선형모델을 이용한 오존예측(Peter et, 1995)등이 있다. (중략)

  • PDF

Performance Evaluation of High-Level Ozone Prediction Model Based on the Confidence Level Test (신뢰수준평가에 기반한 고농도 오존 예측모델의 성능평가)

  • 정재룡;안항배;송치권;배현;전병희;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.195-198
    • /
    • 2002
  • 고농도오존이 발생되는 원인과 환경적 요인의 상호관계를 모델링하기 위해 신경회로 망과 같은 지능제어 기법들이 많이 적용되어 왔다 분석과 모델링을 위해 유전자 알고리즘과 같은 최적화 방법을 적용하기도 하지만, 고농도 오존이 발생되는 메커니즘이 매우 복잡하고, 비선형적이며, 패턴파악이 어렵기 때문에 고농도 오존의 예측 모델링에는 여전히 문제점이 있다 따라서 본 논문에서는 신뢰수준과 신뢰구간을 이용하여 초농도 오존을 예측할 수 있는 모델링 방법을 서술하였다 예측값의 신뢰수준의 평가는 예측에 대한 실측값을 구하여 신뢰구간내의 데이터의 개수를 파악함으로써 신뢰성을 평가할 수 있다. 또한 이 테스트는 우리가 가지고 있지 않은 데이터에 대한 유효성을 평가하는데 적용될 수 있다 그리고 본 논문에서는 GMDH(Group Method of data handling)의 전형적인 알고리즘에 바탕을 두고 있는 DPNN(Dynamic Polynomial Neural Network)를 이용하여 예측 모델을 구성하였다. DPNN은 데이터 해석이 용이하고 비선형적인 동적 시스템 예측에 유용하게 적용될 수 있는 장점을 가지고 있다.

Model-based Ozone Forecasting System using Fuzzy Clustering and Decision tree (퍼지 클러스터링과 결정 트리를 이용한 모델기반 오존 예보 시스템)

  • 천성표;이미희;이상혁;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.458-461
    • /
    • 2004
  • 오존 반응 메카니즘은 상당히 복잡하고 비선형적이기 때문에 오존 농도를 예측하는 것은 상당한 어려움을 안고 있다 따라서, 신뢰성 높은 오존 예측값을 구하는데 단일 예측모델만으로는 한계가 있으며, 이를 개선하기 위하여 다중 모델을 제안하였다. 입력데이터에 퍼지 클러스터링을 사용하여 고, 중, 저농도별로 그룹핑한 후, 그룹핑된 오존농도에 대해서 의사결정 트리를 사용하여 그룹핑된 오존데이터가 어느 정도 분류능력을 갖는지 파악하여, 오차가 가장 적은 분류특성을 갖는 그룹을 설정하여, 다중모델의 입력 데이터로 사용하여 모델을 형성하였다. 의사결정 트리를 이용하여 모델의 입력 데이터를 설정하는 것은 어떤 오존농도까지의 범위를 클래스로 설정하느냐에 따라서 모델의 성능과 고, 중, 저농도의 오존을 분류하는 성능이 달라지므로 본 논문에서는 퍼지 클러스터링을 이용하여 의사결정 트리의 클래스의 범위를 설정하여 예측 시스템을 구현하였다.

  • PDF

크리깅방법에 의한 오존도 예측

  • Jang, Ji-Hui;NamGung, Pyeong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • 공간자료에 대한 통계적 모형과 상관관계, 거리모형 등을 고려하여 크리깅방법에 의한 미 측정지역의 오존도를 예측한다. 서울시의 오존자료를 이용하여 예측한 결과 보통 크리깅방법이 효율적이다.

  • PDF

Modified Transformation and Evaluation for High Concentration Ozone Predictions (고농도 오존 예측을 위한 향상된 변환 기법과 예측 성능 평가)

  • Cheon, Seong-Pyo;Kim, Sung-Shin;Lee, Chong-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.435-442
    • /
    • 2007
  • To reduce damage from high concentration ozone in the air, we have researched how to predict high concentration ozone before it occurs. High concentration ozone is a rare event and its reaction mechanism has nonlinearities and complexities. In this paper, we have tried to apply and consider as many methods as we could. We clustered the data using the fuzzy c-mean method and took a rejection sampling to fill in the missing and abnormal data. Next, correlations of the input component and output ozone concentration were calculated to transform more correlated components by modified log transformation. Then, we made the prediction models using Dynamic Polynomial Neural Networks. To select the optimal model, we adopted a minimum bias criterion. Finally, to evaluate suggested models, we compared the two models. One model was trained and tested by the transformed data and the other was not. We concluded that the modified transformation effected good to ideal performance In some evaluations. In particular, the data were related to seasonal characteristics or its variation trends.

Prediction of Ozone Concentration in Suwon by Empirical Kinetic Modeling Approach (EKMA를 이용한 수원시의 장래 오존농도 예측)

  • 서정배;장영기
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.368-370
    • /
    • 1999
  • 고농도의 오존 농도를 예측ㆍ평가하기 위해서는 대상지역의 기상조건과 풍상쪽(up wind)으로부터의 오존ㆍ오존전구물질(precursor)의 중ㆍ장거리이동, VOCs 및 NOx의 배경농도 및 배출량과 관련된 VOC/NOx의 농도 특성을 파악하는 것이 필수적이다. 따라서 대상지역의 VOCs/NOx의 농도 특성에 따라 차후 고농도의 오존 생성을 예방하기 위한 오존전구물질의 저감대책이 결정되어지므로 대상지역의 광화학특성을 파악하는 것이 선행되어져야 한다.(중략)

  • PDF

A Study on the Development of Prediction Method of Ozone Formation for Ozone Forecast System (오존예보시스템을 위한 오존 발생량의 예측기법 개발에 관한 연구)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • To verify the performance and effectiveness of bilinear model for the development of ozone prediction system, the simulation experiments of the model identification for ozone formation were performed by using bilinear and linear models. And the prediction results of the ozone formation by bilinear model were compared to those of linear model and the measured data of Seoul. ARMA(Autoregressive Moving Average) model was used in the model identification. A recursive parameter estimation algorithm based on an equation error method was used to estimate parameters of model. From the results of model identification experiment, the ozone formation by bilinear model showed good agreement with the ozone formation from the simulator. From the comparison of the prediction results and the measured data, it appears that the method proposed in this work is a reasonable means of developing real-time short-term prediction of ozone formation for an ozone forecast system.

  • PDF

Prediction of Daily Maximum Ozone Concentration using Multi-Regression (중회귀 모형을 이용한 일최고 오존 농도 예측성 검토에 관한 연구)

  • 김영은;조석연
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.203-204
    • /
    • 1999
  • 대기질의 통계예측모형은 주로 오존 농도 예측에 사용된다. 통계예측 방법은 중회귀 모형, 신경망 모형, Fuzzy 논리 모형 등이 있다. 중회귀 모형은 종래 통계분석 방법으로 예전부터 많이 사용되고 있는 방법인 반면에 신경망 모형과 Fuzzy 논리 모형은 최근에 개발되어 적용가능성을 검토 중인 방법이다. 국내외 연구결과에 의하면 각 방법에 의한 고농도 오존 예측성은 크게 다르지 않았다. 국내에서는 중회귀 모형과 신경망 모형이 적용되었는데, 상관계수는 0.6-0.7저도로 보고되었다.(중략)

  • PDF

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.336-339
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Especially, the performance of the prediction results in the high-level ozone concentration are not good. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering methods. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, the identification of nonlinear complex systems, and prediction of dynamical systems.

  • PDF