• Title/Summary/Keyword: 오일 유동

Search Result 426, Processing Time 0.031 seconds

An Experimental Study on Nozzle Damping Characteristics for Combustion Instability Suppression (노즐감쇠 실험을 통한 연소 불안정 억제 연구)

  • Ryoo, Seunghyun;Kim, Junseong;Kim, Hakchul;Moon, Heejang;Lee, Dohyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.724-729
    • /
    • 2017
  • The interaction between the flow of the nozzle and the acoustic motion in the combustion chamber acts as an important factor in suppressing combustion instability where nozzle damping effect can be evaluated by nozzle admittance. In this study, Modified Impedance Tube experiment is implemented to predict the acoustic nozzle damping effect. The experimental admittances are compared to numerical admittances values which are calculated from one-dimensional linearized Euler equation of Crocco's theory. As a result, it was possible to identify qualitatively the tendency between increasing and decreasing parts. Also, Efficient frequency bands of nozzle attenuation can be predicted.

  • PDF

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm (전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석)

  • Guk, Yoonhyeok;Kwon, Taeho;Moon, Seongdeuk;Kim, Dongmin;Hwang, Jinyul;Bae, Youngoh
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.45-54
    • /
    • 2022
  • We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

Design of the Adaptor for Jini in US Broker (US Broker 에서 Jini 를 위한 Adaptor 의 설계)

  • Oh, Il-Jin;Yim, Hyung-Jun;Hwang, Yun-Young;Lee, Kangchan;Lee, Sengyun;Lee, Kyu-Chul
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.823-826
    • /
    • 2007
  • 유비쿼터스 환경이란 사용자가 원하는 모든 종류의 서비스를 시간 및 장소에 구애받지 않고 사용가능하도록 지원하는 것을 뜻한다. 유비쿼터스 환경에서는 다양한 종류의 디바이스 및 서비스가 산재하며, 유동적인 특성을 가진다. 이러한 환경에서 사용자가 원하는 서비스를 발견하기 위해서 기존에는 서비스 디스커버리 미들웨어(서브네트워크)가 제공되었다. 하지만 이러한 서브네트워크는 상호운용을 지원하지 못한다. 상호 운용의 문제를 해결하기 위하여 OSGi, DomoNet, WSUN 등의 연구가 진행되었다. 이러한 연구 중에서 디바이스 및 서비스 통합을 위한 연구인 WSUN 는 US Broker 를 이용하여 사용자가 모든 서브네트워크의 서비스를 사용할 수 있도록 한다. US Broker 는 서브네트워크의 서비스를 웹 서비스화 하여 레지스트리에 저장 및 활용하며, 각각의 서브네트워크와 통신하기 위해 Adaptor 를 컴포넌트로 갖는다. 본 논문에서는 여러 서브네트워크 중 JINI 를 위한 Adaptor 에 대해 구체화하였다.

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.

Prediction of Mean Water Level Rise Behind Low-Crested Structures and Outflow Velocity from Openings by Using a Hybrid Method Based on Two Dimensional Model Test and Hydrodynamic Numerical Modeling (단면수리모형 및 해수유동모델링 결합기법에 의한 저마루 구조물 배후의 평균수위 상승 및 개구부 유출유속 예측)

  • Lee, Dal Soo;Lee, Ki-Jae;Yoon, Jae Seon;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.410-418
    • /
    • 2017
  • The stability of low-crested structure (LCS) and overtopping discharge over a seawall behind the LCS are influenced by the water level behind the structure. Hence, the experimental results can be distorted unless the increase of water level is known when two-dimensional experiment is carried out. In order to estimate increase of the mean water level behind the low-crested structure, this study applied a hybrid technique that combined results of two-dimensional model test and hydrodynamic numerical modeling based on the relationship between the water level and discharge. By using this technique, the mean water level increase and flow field can be obtained almost at the same time, which resolved the above problem considerably. In addition, this method can provide an approximate information about the outflow velocity from the openings of the structure, which is helpful for selecting appropriate planar configuration of the low-crested structure.

A Study on the Variation of the Surface and Groundwater Flow System Related to the Tunnel Excavation in DONGHAE Mine Area (II) - Hydrogeochemical Consideration (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구 (II)-수리지구화학적 고찰)

  • 전효택;이희근;이종운;이대혁;류동우;오석영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The hydrogeochemical study on the 15 natural waters was carried out in the vicinity of tunnel excavation site of Donghae largely composed of granite and limestone. The water samples can be classified based on their chemical characteristics into two groups; waters draining in the granitic region(group 1) and the limestone region(group 2). This classification was also confirmed by statistical examination through cluster analysis, and the tunnel seepage waters collected at the same site appear to be included in group 1 and 2 by their sampling period, respectively. According to factor analysis, the waters of group 1 art mainly represented by the weathering of plagioclase to kaolinite and those of group 2 are characterized by the dissolution of calcite. Different properties of the tunnel seepage waters are thought to be resulted from the effective waterproofing processes conducted during the sampling interval to the surface and subsurface leakage zones at the granitic region, which contributed to the change of groundwater flow system. However both the tunnel seepage waters seem to have thermodynamically interacted with rock-forming minerals in their wallrocks. The mixing ratio of the waters from two groups and water-rock interactions are evaluated quantitatively for the tunnel seepage waters through the mass balance approach, and the results are identical with the previous conclusions in this study.

  • PDF

A Preliminary Study on Measuring Void Fraction in a Fuel Rod Assembly by using an X-ray Imaging System (X선 영상 장치를 이용한 핵연료 집합체 내 기포율 측정을 위한 선행 연구)

  • Lee, Sun-Young;Oh, Oh-Sung;Lee, Se-Ho;Lee, Seung-Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.571-578
    • /
    • 2017
  • Bubbles are generated by the boiling of the cooling water when an accident occurs in the reactor and then in order to measure the void fraction, the Optical Fiber Probe(OFP) and optical camera are used in thermal hydraulic safety research. However, such an optical method is not suitable for measuring the void fraction in a $17{\times}17$ array of fuel rods due to the geometrical limitations. This study was conducted as a preliminary study using x-ray system and various phantoms before applying to rod bundles. Through radiographic and tomographic experiments, the tube voltage of the x-ray generator was 130 kVp and the tube current was 1 mA. In addition, it is possible to measure the hole of 1mm in size visually through the bubble resolution phantom, and it is confirmed that the contrast is relatively decreased in the inside of the freon in the case of the contrast evaluation using the road phantom. However, we could obtain good image without distortion when reconstructing the image. Bubble generation phantom experiments were used to confirm the flow direction of the bubbles and to acquire tomography images. The image J tool was used to measure the void fraction of 18 % for a single tomography image. This study has carried out previous researches for the measurement of the bubble rate around the nuclear fuel and could be used as a basic research for continuous research.

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System (오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교)

  • Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.