• Title/Summary/Keyword: 오염토양부지

Search Result 124, Processing Time 0.028 seconds

우리나라 토양오염부지관련 정보관리체계의 문제점 - 법ㆍ제도를 중심으로 -

  • 황상일;이양희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.5-11
    • /
    • 2004
  • The objectives of this study is to find problems in the legal and institutional background on our information system for soil contaminated sites. To achieve this abjective, we compared our system with those of federal and New Jersey state governments of the United States. We found that we have no comprehensive guideline on how various information from the contaminated sites should be manipulated. In our system, some regulations on information management were found only in a few prescriptions on detection, detailed investigation, and remediation phases. However, we found that provisions, detailed procedures, and related guidelines for the information management are provided in tile case of the federal and New Jersey state governments. Also, public involvement and disclosure of tile information for the remediation procedure are designated in their legal systems.

  • PDF

Human Risk Assessment of Soil Contaminated with Heavy Metal by Waste Reclaimed in Railway Maintenance Site (철도정비부지 내 매립된 폐기물에 의해 중금속으로 오염된 토양의 인체위해성 평가)

  • Braatz, Hatsue Minato;Jung, Minjung;Moon, Seheum;Park, Jinkyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.63-74
    • /
    • 2019
  • This study carried out a human risk assessment of Cu, Pb, Zn and Ni contained in soil contaminated by improperly buried heavy metal wastes in railway sites. The purpose of the human risk assessment is to derive the need for soil remediation and factors that should be considered during soil remediation. Risk assessment was performed in accordance with the Environment Ministry's Risk Assessment Guidelines. The results of the human risk assessment of contaminated heavy metal soil contaminated by improperly buried waste in the railway site were presented after the process of determining exposure concentration, calculating exposure, and determining carcinogenic hazards. The heavy metal content of soil is 621.3 Cu mg/kg, 2,824.5 Pb mg/kg, 1,559.1 Zn mg/kg and 45 Ni mg/kg, which is the exposure concentration of the target contaminant. The results of human exposure according to exposure pathways were high in the order of soil outdoor dust >soil ingestion >soil contact, and Pb >Zn >Cu >Ni were higher in order of contaminant. The carcinogenic and noncarcinogenic risks of soil contaminated with heavy metal waste were higher than the allowable carcinogenic risks (TCR> $10^{-6}$) and the risk index (Hi < 1.0) suggested by USEPA. Therefore, the site needs to be remediated.

Investigation of Soil Pollution Status for Railroad Depot (철도 차량기지의 토양오염 실태 조사)

  • Oa, Seong-Wook;Lee, Tae-Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.788-792
    • /
    • 2009
  • Railroad is well known for eco-friendly transportation system. But, for past few decades, there might be happened many contamination acts in railway facility sites. Industrial and municipal solid wastes produced to maintain and fix trains were dumped to underground of railroad depot area. To develop and reconstruct this area, we should remediate the contaminated soil and ground water. This study was conducted to evaluate the soil pollution status of railroad depot and propose the optimum remediation processes. Our investigation showed that main pollutants sources were TPH and some heavy metals from the dump site. The surveying results for the soil under rail track and crossing nose areas showed TPH contamination from crossing nose area causing lubricant agent. It could be use and rehabilitate the railroad facility areas to an intended purpose with an application of well designed in-situ and ex-situ remediation processes.

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

Soil Investigation Strategies for Soil Risk Assessment (토양위해성평가를 위한 합리적 토양조사방안 연구)

  • Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • The objectives of soil investigation in risk assessment of contaminated sites are to characterize the level and area of contamination, and provide the important physical and chemical properties of contaminated sites for later exposure assessment. This study suggests two soil investigation strategies to be considered in the soil risk assessment in Korea. First, soil investigation for characterizing soil properties is additionally required to the current investigation method that has focused on chemical analysis. Second, application of statistical concepts to soil investigation plan and soil data analysis are required for confidential decison-making on contamination and determining the exposure soil concentration. This study provides a practical soil investigation strategy to involve the current Korean soil analysis guidance with the minimum sample number required for satisfying statistical limits.

Site Application Characteristics of Deep-Site Biopile System for Cleaning Oil-Contaminated Soil/Underground Water (유류오염 토양/지하수 정화를 위해 개발된 DSB(Deep-Site Biopile) System 현장적용특성)

  • Han Seung-Ho;Kong Sung-Ho;Kang Jung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.28-34
    • /
    • 2005
  • The aim of this article is to assess the application characteristics of the site by remediating oil-contaminated area using DSB (Deep-site Biopile) system. In the contaminated area, the soil was composed of penetrable sand and the leaked oil was spread widely (total 7,201 cubic meters) through 2.5 meter deep underground water flow. DSB system was operated for 30 minutes intervals for 24 hours in a day (30 minutes opεration and 30 minutes stop). To check contamination level change in the contaminated area after DSB system was operated, samples were taken. The result from the site shows that BTEX/TPH contamination level was dropped 50% after 30-day operation of DSB system, and that contamination level was dropped below contamination level check standard after 165 days and the remediation was completed. Unlike traditional biological remediation methods DSB system could efficiently process soil and water which were contaminated by high levels of oil compounds.

Developing an Efficient Information Management System of Soil Contaminated Sites in Korea: 2. Future-Oriented Framework (효율적인 오염토양부지 정보관리체계 구축방안: 2. 미래지향적 체계구조)

  • Hwang, Sang-Il;Kim, Hun-Mi;Lee, Yang-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • The whole objective of two papers in series was to develop the framework of an information management system (IMS) for soil-contaminated sites. In the previous first paper (Hwang et al., 2006), current status of information management in our country and the developed countries was investigated and four suggestions were made. In this work (the second paper), the future-oriented framework for information system of soil contamination sites and several suggestions were made.

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea (국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명)

  • Yang, Jihye;Kim, Danu;Oh, Yuna;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.21-33
    • /
    • 2021
  • The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site. From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.