• Title/Summary/Keyword: 오염물질 혼합 해석

Search Result 59, Processing Time 0.024 seconds

Influence of Water Supply Withdrawal on the River Flow and Water Quality (하천취수가 하천흐름 및 수질에 미치는 영향)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.343-352
    • /
    • 2011
  • The water quantity by intake station as well as the tributary flow discharge acting as sink or source were added to the main flow rate in the present study and RMA-2 and RMA-4 models were applied to the reach from Pal-dang dam to Jam-sil submerged weir to investigate the influence of water supply withdrawal on the river flow and water quality. The numerical results revealed that the water supply withdrawal from 5 intake stations located upstream of Jam-sil submerged weir changed the total flow rate and therby induced different hydraulic characteristics in terms of water surface elevation and velocity. The changed flow field by the inclusion of water intake quantity led to the variation of water quality. By the consideration of the water supply withdrawal, the velocity structure was significantly disturbed by the outflowing flow condition nearby Gu-ui, Ja-yang, and Pung-nap intake stations. Furthermore, the mean velocity was lowered by 25% and the stage upstream of Gu-ui station rose upto 1.5 cm compared with the result by exclusion of water intake. In case of no water withdrawal, the distribution of BOD concentration was parallel throughout the domain. However, when the water withdrawal is considered, the distribution of BOD concentration nearby the Gu-ui, Am-sa, and Ja-yang station was signifiantly changed. In addition, the BOD concentration including the intake stations showed higher value at the downstream of the reach due to the loss of the discharge by water withdrawal effect. It is concluded that both the inflow and outflow discharges from tributaries and water intake stations should be included in the numerical simulation to analyze the hydrodynamic behaviors and mixing characteristics more accurately.

Numerical Study of Combustion Characteristics by Pressure and Oxygen Concentration in Counter-Flow Diffusion Flame Model (대향류 확산 화염 모델에서의 압력 및 산소분율에 따른 연소 특성 변화에 관한 수치해석 연구)

  • Park, Jinje;Lee, Youngjae
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.93-103
    • /
    • 2021
  • As the seriousness and necessity of responding to climate change and reducing carbon emissions increases, countries around the world are continuing their efforts to reduce greenhouse gases. Among various efforts, research on CCUS, capturing and utilizing carbon dioxide generated when using carbon-based fuels, is actively being conducted. Studies on pressurized oxy-fuel combustion (POFC) that can be used with CCUS are also being conducted by many researchers. The purpose of this study is to analyze basic information related to the flame structure and pollutant emissions of pressurized oxy-fuel combustion. For this, a counter-flow diffusion flame model was used to analyze the combustion characteristics according to pressure and oxygen concentration. As the pressure increased, the flame temperature increased and the flame thickness decreased due to a reaction rate improvement caused by the activation of the chemical reaction. As oxygen concentration increased, both the flame temperature and the flame thickness increased due to an improvement to the reaction rate and diffusion because of a change in oxidizer momentum. Analyzing the related heat release reaction by dividing it into three sections as the oxygen concentration increased showed that the chemical reaction from the oxidizer side was subdivided into two regions according to the mixture fraction. In addition, the emission index of NO classified according to the NO formation mechanism was analyzed. The formation trend of NO according to each analysis condition was presented.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

On the Annual Variations of Water Temperature and Salinity in Kwang Yang Bay (광양만의 수온과 염분의 연변화에 관하여)

  • 한영호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1975
  • The physical oceanographic investigations in Kwang Yang Bay, were carried out for seven times from May 1974 to May 1975. The results of this survey show that the salinity of the bay water is generally lower than that of the adjacent sea water, and mean surface salt ni ty in March and July were 20.8-25.2\ulcorner and 31. 8-32. 5\ulcorner. The month with the minimum surface water temperature was January with $2.5~5.2^{\circ}C:$ the maximum monthly value was $ 23.8-24.2 ^{\circ} C$ in September. The surface water temperature were related to the heat budget at the sea surface in the bay water, the degree of relationship was good. The mean vertical stability in the bay water(0-10m)were 297XI0^{-6} in July and -IXto^{-6} in January. The computed vertical stability indicate that the vertical mixing could move down to the depths of 15m during late autumn and winter, but the rest of season hardly take place to the depths of tom.

  • PDF

A Study on the Demonstration of Yellow Plume Elimination System from Combined Cycle Power Plant Using Liquid Injection System (액상 직분사 시스템을 이용한 복합화력 황연제거 실증 연구)

  • Lee, Seung-Jae;Kim, Younghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.317-324
    • /
    • 2020
  • Combined cycle power plants (CCPP) that use natural gas as fuel are easier to start and stop, and have lower pollutant emissions, so their share of domestic power generation facilities is steadily increasing. However, CCPP have a high concentration of nitrogen dioxide (NO2) emission in the initial start-up and low-load operation region, which causes yellow plume and civil complaints. As a control technology, the yellow plume reduction system was developed and operated from the mid-2000s. However, this technology was unable to control the phenomenon due to insufficient preheating of the vaporization system for 10 to 20 minutes of the initial start-up. In this study, CFD analysis and demonstration tests were performed to derive a control technology by injecting a reducing agent directly into the gas turbine exhaust duct. CFD analysis was performed by classifying into 5 cases according to the exhaust gas condition. The RMS values of all cases were less than 15%, showing a good mixing. Based on this, the installation and testing of the demonstration facilities facilitated complete control of the yellow plume phenomenon in the initial start-up.

Characterization of lead isotope emission profiles in non-ferrous smelters in South Korea (국내 비철금속 제련시설에서의 납 동위원소 배출특성 연구)

  • Park, Jin-Ju;Kim, Ki-Jun;Park, Jin-Soo;Yoo, Suk-Min;Park, Kwang-Soo;Seok, Kwang-Seol;Shin, Hyung-Sun;Song, Guem-Joo;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.333-339
    • /
    • 2013
  • This study was conducted to build up the inventories of Pb isotopic compositions of major Pb pollution sources in South Korea. Since non-ferrous metal smelters are one of major anthropogenic sources, two smelters for zinc, each one of smelter for lead and copper were selected for the study. The Pb concentrations and isotopic compositions of metal ores, wastewater, sludge, metal rod and produced sulfuric acid were analysed to understand the Pb isotopic patterns in environment. The isotopic ratio, $^{206}Pb/^{207}Pb$, of zinc ores from zinc smelter were in the range of 1.179~1.198 and the ratio of waste, flue gas and products samples were 1.105~1.147. This results implied that the isotopic patterns of output samples showed mixing patterns between two distinct metal ore soerces. In 2011, major importing countries of zinc ore were Australia, Peru and Mexico. Thus Pb isotopic patterns from zinc smelter is originated from the mixing patterns between less radiogenic Australian ores and more radiogenic South America's ores. Lead smelters also showed the same mixing patterns with those of zinc smelters. However copper smelter showed same Pb isotopic patterns with more radiogenic South America's ores.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Countermeasure and Outbreak Mechanism of Cochlodinium polykrikoides red tide 1. Environmental characteristics on outbreak and disappearanceof C. polykrikoides bloom (Cochlodinium polykrikoides 적조 발생기작과 대책 1. Cochlodinium polykrikoides 적조 발생과 소멸의 환경특성)

  • Park, Young-Tae;Kim, Young-Sug;Kim, Kui-Young;Park, Jong-Soo;Go, Woo-Jin;Jo, Yeong-Jo;Park, Seong-Yoon;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.259-264
    • /
    • 2001
  • Typhoon and neap tide on Cochlodinium polykrikoides bloom and water temperature on disappearance of C. polykrikoides bloom were investigated to elucidate the outbreak mechanism of C. polykrikoides blooms at Naro and Namhae coastal area in South Sea of Korea. The first observation of C. polykrikoides blooms were observed when thermocline was disappeared by typhoon, tide, etc. The first blooms of C. polykrikoides were observed on neap tide or before one day from neap tide in 1996-1998 and 2000. However, thermocline was disappeared by typhoon in 1994 and 1999, the first blooms were observed early 12-30 day than 1996-1998 and 2000. The main reason of disappearance of C. polykrikoides blooms after typhoon on 1997-2000 seems to be other environmental change by typhoon rather than low water temperature. In the future, the first C. polykrikoides bloom will be appear around the first neap tide of latter part of August with breaking down of thermocline, but if the thermocline be collapsed by typhoon in July, the C. polykrikoides bloom will be appear at beginning of August. The outbreak of C. polykrikoides blooms will be explain as follows: The vegetative cells, which was germinated by environmental change or already exist in surface water at low level, input to the surface water, and then nutrients and trace metals which were suppled from out side of C. polykrikoides bloom area inflow to surface. The vegetative cells are growth by the nutrients and trace metals at suitable environmental conditions e.g. water temperature, salinity, and sufficient light.

  • PDF