DOI QR코드

DOI QR Code

Numerical Study of Combustion Characteristics by Pressure and Oxygen Concentration in Counter-Flow Diffusion Flame Model

대향류 확산 화염 모델에서의 압력 및 산소분율에 따른 연소 특성 변화에 관한 수치해석 연구

  • Received : 2021.02.10
  • Accepted : 2021.02.25
  • Published : 2021.03.31

Abstract

As the seriousness and necessity of responding to climate change and reducing carbon emissions increases, countries around the world are continuing their efforts to reduce greenhouse gases. Among various efforts, research on CCUS, capturing and utilizing carbon dioxide generated when using carbon-based fuels, is actively being conducted. Studies on pressurized oxy-fuel combustion (POFC) that can be used with CCUS are also being conducted by many researchers. The purpose of this study is to analyze basic information related to the flame structure and pollutant emissions of pressurized oxy-fuel combustion. For this, a counter-flow diffusion flame model was used to analyze the combustion characteristics according to pressure and oxygen concentration. As the pressure increased, the flame temperature increased and the flame thickness decreased due to a reaction rate improvement caused by the activation of the chemical reaction. As oxygen concentration increased, both the flame temperature and the flame thickness increased due to an improvement to the reaction rate and diffusion because of a change in oxidizer momentum. Analyzing the related heat release reaction by dividing it into three sections as the oxygen concentration increased showed that the chemical reaction from the oxidizer side was subdivided into two regions according to the mixture fraction. In addition, the emission index of NO classified according to the NO formation mechanism was analyzed. The formation trend of NO according to each analysis condition was presented.

기후변화 대응과 탄소배출 저감에 대한 심각성 및 필요성이 중요시 되면서 세계 각국은 온실가스를 감축하고자 하는 노력을 지속하고 있다. 다양한 노력들 중 탄소기반 연료 사용 시 발생되는 이산화탄소를 포집하여 활용하는 CCUS에 대한 연구가 활발히 진행되고 있으며, 이러한 관점에서 CCUS와 함께 활용될 수 있는 가압 순산소 연소에 대한 연구도 여러 연구자들에 의해 진행되고 있다. 본 연구는 가압 순산소 연소의 화염 구조와 오염물질 배출과 관련된 기초적인 정보를 분석하는데 목적이 있다. 이를 위해 대향류 확산 화염 모델을 이용하여 압력 및 산소분율에 따른 연소의 특성을 분석한 결과, 압력이 높을수록 화학 반응의 활성화로 인한 반응율의 증가로 연소 온도가 증가하고 화염두께는 감소한 반면, 산소분율이 높을수록 반응율 증가 및 산화제 운동량 변화에 따른 확산의 영향으로 연소 온도 및 화염두께 모두 증가하였다. 이와 관련된 열방출 반응을 3가지 구간으로 구분하여 분석한 결과, 특히 산소분율이 증가할수록 산화제 측면에서 나타나는 화학 반응이 혼합분율에 따라 크게 두 개의 영역으로 세분화되는 특성이 나타났다. 또한, NO의 생성 메커니즘에 따라 구분된 배출지수(EINO)를 분석하였고, 각 해석 조건에 따른 NO의 생성 경향을 제시하였다.

Keywords

References

  1. Ministry of Culture, Sports and Tourism, "2050 Carbon Neutral," https://www.korea.kr/special/policyCurationView.do?newsId=148881562 (accessed Feb. 2021).
  2. Ministry of Economy and Finance, "2050 Carbon Neutral Strategy," https://www.korea.kr/archive/expDocView.do?docId=39241 (accessed Feb. 2021).
  3. Gibbins, J., and Chalmers, H., "Carbon Capture and Storage," Energy. Policy., 36(12), 4317-4322 (2008). https://doi.org/10.1016/j.enpol.2008.09.058
  4. Anderson, S., and Newell, R., "Prospects for Carbon Capture and Storage technologies," Anmu. Rev. Environ. Resour., 29, 109-142 (2004). https://doi.org/10.1146/annurev.energy.29.082703.145619
  5. Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., Puxty, G., Reimer, J., Reiner, D. M., Rubin, E. S., Scott, S. A., Shah, N., Smit, B., Trusler, J. P. M., Webley, P., Wilcox, J., and Dowell, N. N., "Carbon Capture and Storage (CCS): The Way Forward," Energy. Environ. Sci., 11(5), 1062-1176 (2018). https://doi.org/10.1039/C7EE02342A
  6. Hong, J. S., Ghaudhry, G., Brisson, J. G., Field, R., Gazzino, M., and Ghoniem, A. F., "Analysis of Oxy-fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustion," Energy., 34(9), 1332-1340 (2009). https://doi.org/10.1016/j.energy.2009.05.015
  7. Soundararajan, R., and Gundersen, T., "Coal based Power Plants Using Oxy-combustion for CO2 Capture: Pressurized Coal Combustion to Reduce Capture Penalty," Appl. Therm. Eng., 61(1), 115-122 (2013). https://doi.org/10.1016/j.applthermaleng.2013.04.010
  8. Zebian, H., Gazzino, M., and Mitsos, A., "Multi-variable Optimization of Pressurized Oxy-coal Combustion," Energy., 38(1), 37-57 (2012). https://doi.org/10.1016/j.energy.2011.12.043
  9. Kee, R. J., Miller, J. A., Evans, G. H., and Dixon-Lewis, G., "A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-air Flames," Proc. Combust. Inst., 22(1), 1479-1494 (1989). https://doi.org/10.1016/S0082-0784(89)80158-4
  10. Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Lissianski, V. V., and Qin, Z., "The GRI-mechtm Model for Natural Gas Combustion and NO Formation and Removal Chemistry," In Proceedings of the 5th International Conference on Combustion Technologies for a Clean Environment, http://www.me.berkeley.edu/gri_ mech (1999).
  11. Hu, F., Li, P., Guo, J., Wang, K., Liu, Z., and Zheng, C., "Evaluation, Development, and Validation of a New Reduced Mechanism for Methane Oxy-Fuel Combustion," Int. J. Greenh. Gas. Con., 78, 327-340 (2018). https://doi.org/10.1016/j.ijggc.2018.08.018
  12. Fisher, M., and Jiang, X., "A Chemical Kinetic Modelling Study of the Combustion of CH4-CO-H2-CO2 Fuel Mixtures," Combust., Flame., 167, 274-293 (2016). https://doi.org/10.1016/j.combustflame.2016.02.001
  13. Ahmed S. F., Santner, J., Dryer, F. L., Padak, B., and Farouk, T. I., "Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation, Part 2: NOx in High Hydrogen Content Fuel Combustion at Elevated Pressure," Energy. Fuels., 30(9), 7691-7703 (2016). https://doi.org/10.1021/acs.energyfuels.6b00421
  14. Li, H., Li, G., Sun, Z., Li, Y., and Yuan, Y., "Investigation on Dilution Effect on Laminar Burning Velocity of Syngas Premixed Flames," Energy., 112, 146-152 (2016). https://doi.org/10.1016/j.energy.2016.06.015
  15. Ren, Y., Qin, W., Egolfopoulos, F. N., and Tsotsis, T. T., "Strain-rate Effects on Hydrogen-enhanced Lean Premixed Combustion," Combust. Flame., 124(4), 717-720 (2001). https://doi.org/10.1016/S0010-2180(00)00205-4
  16. Chelliah, H. K., Law, C. K., Ueda, T., Smooke, M. D., and Williams, F. A., "An Experimental and Theoretical Investigation of the Dilution, Pressure and Flow-field Effects on the Extinction Condition of Methan-air-nitrogen Diffusion Flames," Proc. Combust. Inst., 23(1), 503-511 (1991). https://doi.org/10.1016/S0082-0784(06)80297-3
  17. Park, J., Park, J. S., Kim, H. P., Kim, J. S., Kim, S. C., Choi, J. G., Cho, H. C., Cho, K. W., and Park, H. S., "NO Emission Behavior in Oxy-fuel Combustion Recirculated with Carbon Dioxide," Energy. Fuels., 21(1), 121-129 (2007). https://doi.org/10.1021/ef060309p
  18. Takeno, T., and Nishioka, M., "Species Conservation and Emission Indices for Flames Described by Similarity Solutions," Combust. Flame., 92(4), 465-468 (1993). https://doi.org/10.1016/0010-2180(93)90157-X
  19. Hwang, C. H., Yoo, B. H., Lee, C. E., and Han, J. W., "NOx Formation Characteristics with Oxygen Enrichment in Nonpremixed Counterflow Flames," J. Kor. Inst. Gas., 11(4), 17-22 (2007).