• Title/Summary/Keyword: 오염물질 유출

Search Result 699, Processing Time 0.031 seconds

A Study on the Concept of Operations and Improvement of the Design Methodology for the Physical Protection System of the National Infrastructure - Focused on Nuclear Power Plants - (국가기반시설 물리적 방호체계 운영개념 및 설계방법 개선방안 연구: 원자력발전소를 중심으로)

  • Na, Seog-Jong;Sung, Ha-Yan;Choi, Sun-Hee
    • Korean Security Journal
    • /
    • no.61
    • /
    • pp.9-38
    • /
    • 2019
  • As the scales & density of the Korean national infrastructures have been increased, they will be identified as rich and attractive potential targets for intensified North Korea's attack in the rear region and terrorism attack. In addition, due to changes in security environment such as drone threats and lack of security forces under the 52-hour workweek law, I think that it is the proper time point to reevaluate the effectiveness and appropriateness of the current physical protection system and its shift to a new system. In this study, the direction and improvement of the perimeter physical protection systems of the national infrastructures are to be studied from the viewpoints of its concepts of operations and design methodology, focusing on the nuclear power plant. The reason why we focus on nuclear power plants is because they cause wide-range and long-term damages caused by radioactive materials disperal and pollution, along with short-term damage caused by the interruption of electricity generation in the event of damage to nuclear power plants. With the aim of extracting improvement directions, as we will comprehensively review domestic research trends and domestic·overseas related laws, and consider Korea's specificity, we try to reframe the concept of operation - systematization, mobilization and flexibility -, and establish criteria on system change. In order to improve the technical performance of the new perimeter physical protection system, we study on high-fidelity·multi-methodology based integrated design methodology, breaking from individual silo-type design methods, and I suggest improvement of government procurement, its expansion to export business and other national infrastructure.

A Study on the Water Exchange Plan with Disaster Prevention Facilities in Masan Bay (마산만 재해방지시설을 이용한 해수교환 방안에 관한 연구)

  • Kim, Gweon-Su;Ryu, Ha-Sang;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.637-645
    • /
    • 2013
  • Masan bay with a semi-enclosed waters has serious water quality problems due to the low flow and river pollution load from land, and shows the vulnerable locational characteristics to storm surge. We are seeking the way of both operating disaster prevention facilities and water quality improvement measures in the bay. That is, the water was exchanged using the head difference occurred by operating disaster prevention facilities. The location of disaster prevention facilities was assumed to be in the inlet of the bay, in the vicinity of Machang bridge, and in the vicinity of Dot island and the operation time was assumed to be early morning hours(01~05) considering the number of shipping passage and annual tide, and spring tide of the largest head difference. In addition, the experiment case of water exchange including the in-outflow feeder pipe was tested. According to the simulation results, water exchange rate in all experiments has shown a steady increase. Water exchange rate of the whole of Masan bay in the case of present is 38.62%. The water exchange rate of the inside of Masan bay compared with the inlet of bay, appeared to be very low. Thus, we judged that the characteristics of semi-enclosed waters were well reproduced. On the results of the experiment of disaster prevention facilities and in-outflow feeder pipe, the case of the operation of disaster prevention facilities, water exchage rate is high compared with the case of present. And, the higer the operating frequency, the more water exchange is appeared. The cases of water exchange prevention facilities through the in-outflow feeder pipe caused by the head difference, also showed the higest improvement of the water quality. Compared with the south of Machang bridge, the effect of water exchange was better in the inlet of Masan bay and Dot island. On the other hand, the inlet of Masan bay is higer than Dot island as for water exchange of the whole of Masan bay, but opposite, water change rate including Masan inside was higher in the case of Dot island.

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Hydrogeologic and Hydrogeochemical Assessment of Water Sources in Gwanin Water Intake Plant, Pocheon (포천 관인취수장 수원에 대한 수리지질 및 수리지구화학적 평가)

  • Shin, Bok Su;Koh, Dong-Chan;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • The section from water source to 2.6km upper stream of Hantan River is protected as the drinking water quality protection area according to guidelines of Ministry of Environment, because water source of the Gwanin water intake plant has been known the river. However, opinions were consistently brought up that the standard of water source protection zone must be changed with using underground water as water source because of contribution possibility of underground water as the water source of Gwanin water intake facility. In this regard, hydrogeologic investigation including resistivity survey and hydrogeochemical investigation were carried out to assess water source and infiltration of contaminant for the plant. Quaternary basaltic rocks (50m thick with four layers) covered most of the study area on the granite basement. As the result of the resistivity survey, it is revealed that permeable aquifer is distributed in the boundary of two layers: the basaltic layer with low resistivity; and the granite with high resistivity. Considering of outflow from Gwanin water intake facility, the area possessing underground water was estimated at least $5.7km^2$. The underground water recharged from Cheorwon plain was presumed to outflow along the surface of unconformity plane of basalt and granite. Based on field parameters and major dissolved constituents, groundwater and river water clearly distinguished and the spring water was similar to groundwater from the basaltic aquifer. Temporal variation of $SiO_2$, Mg, $NO_3$, and $SO_4$ concentrations indicated that spring water and nearby groundwater were originated from the basaltic aquifer and other groundwater from granitic aquifer. In conclusion, the spring of the Gwanin water intake plant was distinguished from river water in terms of hydrogeochemical characteristics and mainly contributed from the basaltic aquifer.

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

Analysis of Fluid Flows in a High Rate Spiral Clarifier and the Evaluation of Field Applicability for Improvement of Water Quality (고속 선회류 침전 장치의 유동 해석 및 수질 개선을 위한 현장 적용 가능성 평가)

  • Kim, Jin Han;Jun, Se Jin
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The purpose of this study is to evaluate the High Rate Spiral Clarifier(HRSC) availability for the improvement of polluted retention pond water quality. A lab scale and a pilot scale test was performed for this. The fluid flow patterns in a HRSC were studied using Fluent which is one of the computational fluid dynamic(CFD) programs, with inlet velocity and inlet diameter, length of body($L_B$) and length of lower cone(Lc), angle and gap between the inverted sloping cone, the lower exit hole installed or not installed. A pilot scale experimental apparatus was made on the basis of the results from the fluid flow analysis and lab scale test, then a field test was executed for the retention pond. In the study of inside fluid flow for the experimental apparatus, we found out that the inlet velocity had a greater effect on forming spiral flow than inlet flow rate and inlet diameter. There was no observable effect on forming spiral flow LB in the range of 1.2 to $1.6D_B$(body diameter) and Lc in the range of 0.35 to $0.5L_B$, but decreased the spiral flow with a high ratio of $L_B/D_B$ 2.0, $Lc/L_B$ 0.75. As increased the angle of the inverted sloping cone, velocity gradually dropped and evenly distributed in the inverted sloping cone. The better condition was a 10cm distance of the inverted sloping cone compared to 20cm to prevent turbulent flow. The condition that excludes the lower exit hole was better to prevent channeling and to distribute effluent flow rate evenly. From the pilot scale field test it was confirmed that particulate matters were effectively removed, therefore, this apparatus could be used for one of the plans to improve water quality for a large water body such as retention ponds.

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.