• Title/Summary/Keyword: 오버샘플링 기법

Search Result 57, Processing Time 0.022 seconds

Blind frequency offset estimation method in OFDM systems (OFDM에서 블라인드 주파수 옵셋 추정 방법)

  • Jeon, Hyoung-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.823-832
    • /
    • 2011
  • In this paper, an efficient blind carrier frequency offset (CFO) estimation method in orthogonal frequency division multiplexing (OFDM) systems is proposed. In the proposed method, we obtain two time different received OFDM symbols by using both the cyclic prefix and oversampling technique, and a cost function is defined by using the two OFDM symbols. We show that the cost function can be approximately expressed as a cosine function. Using a property of the cosine function, a formular for estimating the CFO is derived. The estimator of the CFO requires three independent cost function values calculated at three different points of frequency offset. The proposed method is very efficient in computational complexity since no searching operation for the minimum cost value is required. The proposed method reduces 97% of the amount of FFT computation, compared with the ML method. Unlike the conventional methods such as the ML method and the MUSIC] method, the accuracy of the proposed method is independent of the searching resolution since the closed form solution exists. The computer simulation shows that the performance of the proposed method is superior to those of the MUSIC and the ML method.

A Clock and Data Recovery Circuit using Quarter-Rate Technique (1/4-레이트 기법을 이용한 클록 데이터 복원 회로)

  • Jeong, Il-Do;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.130-134
    • /
    • 2008
  • This paper presents a clock and data recovery(CDR) using a quarter-rate technique. The proposed CDR helps reduce the VCO frequency and is thus advantageous for high speed application. It can achieve a low jitter operation and extend the pull-in range without a reference clock. The CDR consists of a quarter-rate bang-bang type phase detector(PD) quarter-rate frequency detector(QRFD), two charge pumps circuits(CPs), low pass filter(LPF) and a ring voltage controlled oscillator(VCO). The Proposed CDR has been fabricated in a standard $0.18{\mu}m$ 1P6M CMOS technology. It occupies an active area $1{\times}1mm^2$ and consumes 98 mW from a single 1.8 V supply.

Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model under Imbalanced Data (불균형 데이터 환경에서 로지스틱 회귀모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Kim, Bum-Kyu;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1353-1364
    • /
    • 2018
  • This study proposed a method to detect Cochlodinium polykrikoides red tide pixels in satellite images using a logistic regression model of machine learning technique under Imbalanced data. The spectral profiles extracted from red tide, clear water, and turbid water were used as training dataset. 70% of the entire data set was extracted and used for as model training, and the classification accuracy of the model was evaluated using the remaining 30%. At this time, the white noise was added to the spectral profile of the red tide, which has a relatively small number of data compared to the clear water and the turbid water, and over-sampling was performed to solve the unbalanced data problem. As a result of the accuracy evaluation, the proposed algorithm showed about 94% classification accuracy.

Predicting Highway Concrete Pavement Damage using XGBoost (XGBoost를 활용한 고속도로 콘크리트 포장 파손 예측)

  • Lee, Yongjun;Sun, Jongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2020
  • The maintenance cost for highway pavement is gradually increasing due to the continuous increase in road extension as well as increase in the number of old routes that have passed the public period. As a result, there is a need for a method of minimizing costs through preventative grievance Preventive maintenance requires the establishment of a strategic plan through accurate prediction old Highway pavement. herefore, in this study, the XGBoost among machine learning classification-based models was used to develop a highway pavement damage prediction model. First, we solved the imbalanced data issue through data sampling, then developed a predictive model using the XGBoost. This predictive model was evaluated through performance indicators such as accuracy and F1 score. As a result, the over-sampling method showed the best performance result. On the other hand, the main variables affecting road damage were calculated in the order of the number of years of service, ESAL, and the number of days below the minimum temperature -2 degrees Celsius. If the performance of the prediction model is improved through more data accumulation and detailed data pre-processing in the future, it is expected that more accurate prediction of maintenance-required sections will be possible. In addition, it is expected to be used as important basic information for estimating the highway pavement maintenance budget in the future.

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

Blind Frequency offset Estimation for Radio Resource Saving in OFDM (OFDM에서 무선자원 절약을 위한 블라인드 주파수 옵셋 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1001-1009
    • /
    • 2009
  • In this paper, an efficient blind frequency offset estimation method for radio resource saving in orthogonal frequency division multiplexing (OFDM) systems is proposed. In the proposed method, we obtain two time different received OFDM signal blocks by using the cyclic prefix and define the cost function by using the two OFDM signal blocks. We show that the cost function can be approximately expressed as a closed form cosine function. The approximated cosine function can be obtained from three independent cost function values calculated at three different frequency offsets. In the proposed method, the frequency offset can be estimated by calculating a frequency offset minimizing the approximated cosine function without searching all the frequency offset range. Unlike the conventional methods such as MUSIC method, the accuracy of the proposed method is independent of the searching resolution since the closed form solution exists. The computer simulation shows that the performance of the proposed method is superior to those of the MUSIC and the oversampling method.

Sparse Class Processing Strategy in Image-based Livestock Defect Detection (이미지 기반 축산물 불량 탐지에서의 희소 클래스 처리 전략)

  • Lee, Bumho;Cho, Yesung;Yi, Mun Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1720-1728
    • /
    • 2022
  • The industrial 4.0 era has been opened with the development of artificial intelligence technology, and the realization of smart farms incorporating ICT technology is receiving great attention in the livestock industry. Among them, the quality management technology of livestock products and livestock operations incorporating computer vision-based artificial intelligence technology represent key technologies. However, the insufficient number of livestock image data for artificial intelligence model training and the severely unbalanced ratio of labels for recognizing a specific defective state are major obstacles to the related research and technology development. To overcome these problems, in this study, combining oversampling and adversarial case generation techniques is proposed as a method necessary to effectively utilizing small data labels for successful defect detection. In addition, experiments comparing performance and time cost of the applicable techniques were conducted. Through experiments, we confirm the validity of the proposed methods and draw utilization strategies from the study results.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Enhanced Machine Learning Preprocessing Techniques for Optimization of Semiconductor Process Data in Smart Factories (스마트 팩토리 반도체 공정 데이터 최적화를 위한 향상된 머신러닝 전처리 방법 연구)

  • Seung-Gyu Choi;Seung-Jae Lee;Choon-Sung Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • The introduction of Smart Factories has transformed manufacturing towards more objective and efficient line management. However, most companies are not effectively utilizing the vast amount of sensor data collected every second. This study aims to use this data to predict product quality and manage production processes efficiently. Due to security issues, specific sensor data could not be verified, so semiconductor process-related training data from the "SAMSUNG SDS Brightics AI" site was used. Data preprocessing, including removing missing values, outliers, scaling, and feature elimination, was crucial for optimal sensor data. Oversampling was used to balance the imbalanced training dataset. The SVM (rbf) model achieved high performance (Accuracy: 97.07%, GM: 96.61%), surpassing the MLP model implemented by "SAMSUNG SDS Brightics AI". This research can be applied to various topics, such as predicting component lifecycles and process conditions.

A Classification Model for Customs Clearance Inspection Results of Imported Aquatic Products Using Machine Learning Techniques (머신러닝 기법을 활용한 수입 수산물 통관검사결과 분류 모델)

  • Ji Seong Eom;Lee Kyung Hee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Seafood is a major source of protein in many countries and its consumption is increasing. In Korea, consumption of seafood is increasing, but self-sufficiency rate is decreasing, and the importance of safety management is increasing as the amount of imported seafood increases. There are hundreds of species of aquatic products imported into Korea from over 110 countries, and there is a limit to relying only on the experience of inspectors for safety management of imported aquatic products. Based on the data, a model that can predict the customs inspection results of imported aquatic products is developed, and a machine learning classification model that determines the non-conformity of aquatic products when an import declaration is submitted is created. As a result of customs inspection of imported marine products, the nonconformity rate is less than 1%, which is very low imbalanced data. Therefore, a sampling method that can complement these characteristics was comparatively studied, and a preprocessing method that can interpret the classification result was applied. Among various machine learning-based classification models, Random Forest and XGBoost showed good performance. The model that predicts both compliance and non-conformance well as a result of the clearance inspection is the basic random forest model to which ADASYN and one-hot encoding are applied, and has an accuracy of 99.88%, precision of 99.87%, recall of 99.89%, and AUC of 99.88%. XGBoost is the most stable model with all indicators exceeding 90% regardless of oversampling and encoding type.