최근 인공지능 기술이 발전하면서 해킹 공격을 탐지하기 위해 인공지능을 이용하려는 연구가 활발히 진행되고 있다. 하지만, 인공지능 모델 개발에 핵심인 학습데이터를 구성하는데 있어서 보안데이터가 대표적인 불균형 데이터라는 점이 큰 장애물로 인식되고 있다. 이에 본 눈문에서는 오버샘플링을 위한 데이터 추출에 딥러닝 생성 모델인 VAE를 적용하고 K-NN을 이용한 가중치 계산을 통해 클래스별 오버샘플링 개수를 설정하여 샘플링을 하는 W-VAE 오버샘플링 기법을 제안한다. 본 논문에서는 공개 네트워크 보안 데이터셋인 NSL-KDD를 통해 ROS, SMOTE, ADASYN 등 총 5가지 오버샘플링 기법을 적용하였으며 본 논문에서 제안한 오버샘플링 기법이 F1-Score 평가지표를 통해 기존 오버샘플링 기법과 비교하여 가장 효과적인 샘플링 기법임을 증명하였다.
기계학습 분야에서 분류 문제를 해결하기 위해 다양한 알고리즘들이 연구되고 있다. 하지만 기존에 연구된 분류 알고리즘 대부분은 각 클래스에 속한 데이터 수가 거의 같다는 가정하에 학습을 진행하기 때문에 각 클래스의 데이터 수가 불균형한 경우 분류 정확도가 다소 떨어지는 현상을 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 Conditional Generative Adversarial Networks(CGAN)을 활용하여 데이터 수의 균형을 맞추는 오버샘플링 기법을 제안한다. CGAN은 데이터 수가 적은 클래스에 속한 데이터 특징을 학습하고 실제 데이터와 유사한 데이터를 생성한다. 이를 통해 클래스별 데이터의 수를 맞춰 분류 알고리즘의 분류 정확도를 높인다. 실제 수집된 데이터를 이용하여 CGAN을 활용한 오버샘플링 기법이 효과가 있음을 보이고 기존 오버샘플링 기법들과 비교하여 기존 기법들보다 우수함을 입증하였다.
하천 내 오염물질 유입원은 하수처리장과 같이 농도를 예측 가능한 점오염원이 일반적이지만, 수질오염사고와 같이 다량의 유해물질이 일시에 하천에 유입되는 경우도 발생하곤 한다. 특히 오염물질 유입지점과 취수장이 인접한 경우, 오염물질 혼합해석에 대한 이해가 오염사고 대응 및 수질 관리 측면에서 매우 중요하다. 자연하천에서는 사행에 따른 유속 구조의 불균일성 등으로 인하여 오염물질의 이송 및 분산 과정은 매우 복잡하게 나타난다. 이러한 하천의 지형적, 수리학적 특성이 오염물질의 혼합 거동에 미치는 영향을 정확하게 모의하기 위해서는 3차원 수치모형을 적용해야 한다. 그러나 대부분의 하천은 하폭 대 수심비가 매우 크기 때문에 2차원 이송-분산 방정식을 지배방정식으로 채택하는 2차원 수치 모형이 널리 사용되어왔다. 2차원 이송-분산 방정식의 해석결과는 입력된 종, 횡 분산계수의 값에 따라 변화하기 때문에 정확한 혼합해석을 위해 분산계수의 결정이 매우 중요하다. 과거 연구에서는 횡 분산계수의 결정을 위해 기본 수리량을 이용한 경험식을 활용하여 계산한 바 있다. 종 분산계수의 경우에는 경험식의 산정에 필요한 충분한 실험 자료가 축적되어 있지 않아 이상적 흐름 상태를 가정하여 유도된 Elder의 이론식(Elder, 1959)을 사용해왔다. 하지만 많은 연구에서 이러한 Elder의 이론식이 종 분산계수를 과소산정 할 우려가 있다고 제시했다. 따라서 하천의 전단류 분산특성을 나타낼 수 있는 데이터 확보를 통해 종 분산계수의 경험식 산정 및 횡 분산계수의 정확도 향상이 필요한 상황이다. 본 연구에서는 기존 선행 연구에서 수행된 2차원 추적자실험 데이터의 확장을 위해 오버샘플링 기법을 적용하였으며, 이를 통한 머신러닝을 통한 분산계수 산정 가능성을 분석하고자 한다. 부족한 추적자 실험 데이터를 확장하기 위해 오버샘플링 기법 중 SMOTE 기법을 활용했다. 오버샘플링 기법을 이용하여 생산된 데이터의 신뢰성을 검증하였으며, 추후 머신러닝을 이용한 2차원 종, 횡 분산계수 산정에 대한 활용 가능성을 분석했다.
최근에는 데이터베이스의 발달로 금융, 보안, 네트워크 등에서 생성된 많은 데이터가 저장 가능하며, 기계학습 기반 분류기를 통해 분석이 이루어지고 있다. 이 때 주로 야기되는 문제는 데이터 불균형으로, 학습 시 다수 범주의 데이터들로 과적합이 되어 분류 정확도가 떨어지는 경우가 발생한다. 이를 해결하기 위해 소수 범주의 데이터 수를 증가시키는 오버샘플링 전략이 주로 사용되며, 데이터 분포에 적합한 기법과 인자들을 다양하게 조절하는 과정이 필요하다. 이러한 과정의 개선을 위해 본 연구에서는 스모트와 생성적 적대 신경망 등 다양한 기법 기반의 오버샘플링 조합과 비율을 유전알고리즘을 통해 탐색하고 최적화 하는 전략을 제안한다. 제안된 전략과 단일 오버샘플링 기법으로 신용카드 사기 탐지 데이터를 샘플링 한 뒤, 각각의 데이터들로 학습한 분류기의 성능을 비교한다. 그 결과 유전알고리즘으로 기법별 비율을 탐색하여 최적화 한 전략의 성능이 기존 전략들 보다 우수했다.
분류 문제는 주어진 입력 데이터에 대해 해당 데이터의 클래스를 예측하는 문제로, 자주 쓰이는 방법 중의 하나는 주어진 데이터셋을 사용하여 기계학습 알고리즘을 학습시키는 것이다. 이런 경우 분류하고자 하는 클래스에 따른 데이터의 분포가 균일한 데이터셋이 이상적이지만, 불균형한 분포를 가지고 경우 제대로 분류하지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 Conditional Generative Adversarial Networks(CGAN)을 활용하여 데이터 수의 균형을 맞추는 오버샘플링 기법을 제안한다. CGAN은 Generative Adversarial Networks(GAN)에서 파생된 생성 모델로, 데이터의 특징을 학습하여 실제 데이터와 유사한 데이터를 생성할 수 있다. 따라서 CGAN이 데이터 수가 적은 클래스의 데이터를 학습하고 생성함으로써 불균형한 클래스 비율을 맞추어 줄 수 있으며, 그에 따라 분류 성능을 높일 수 있다. 실제 수집된 데이터를 이용한 실험을 통해 CGAN을 활용한 오버샘플링 기법이 효과가 있음을 보이고 기존 오버샘플링 기법들과 비교하여 기존 기법들보다 우수함을 입증하였다.
본 연구에서는 3차원 보행 데이터 기반 체질량지수(Body Mass Index, BMI) 추정 기술의 분류 정확도를 향상시킬 수 있는 방법을 제안한다. BMI 추정 기술에 관해 기존 연구에서는 BMI 분류 정확도가 약 60%에 불과했다. 이에 본 연구에서는 먼저 BMI 분류 정확도가 낮았던 원인을 규명한다. 본 연구의 분석 결과에 따르면, 그 원인은 보행 데이터 세트의 클래스 불균형(Class Imbalance) 문제를 해결하기 위해 언더샘플링(Undersampling) 기법을 사용한 것에 있었다. 이에 본 연구에서는 언더샘플링 기법 대신 오버샘플링(Oversampling) 기법을 적용해 클래스 불균형 문제를 해결하는 것을 제안한다. 또한, 보행 데이터 기반 BMI 추정 기술에서 인체 측정학(Anthropometric) 특징과 시공간적(Spatiotemporal) 특징의 유용성을 재입증한다. 기존 연구에서는 언더샘플링 기법이 적용된 상태에서 인체 측정학 특징과 시공간적 특징의 유용성이 평가됐고, 두 특징을 함께 사용하면 단독으로 사용했을 때보다 BMI 추정 성능이 낮아진다고 보고됐다. 하지만 본 연구 결과에 따르면, 두 특징을 함께 사용하고 오버샘플링 기법을 적용했을 때 BMI 추정 문제에서 92.92%의 정확도로 SOTA(State-Of-The-Art) 성능을 달성하는 것을 보인다.
이미지와 같은 비정형 데이터의 불균형 클래스 문제 해결에 있어 생산적 적대 신경망(generative adversarial network)에 기반한 오버샘플링 기법의 우수성이 알려짐에 따라 다양한 연구들이 이를 정형 데이터의 불균형 문제 해결에도 적용하기 시작하였다. 그러나 이러한 연구들은 데이터의 형태를 비정형 데이터 구조로 변경함으로써 정형 데이터의 특징을 정확하게 반영하지 못한다는 점이 문제로 지적되고 있다. 본 연구에서는 이를 해결하기 위해 순환 생산적 적대 신경망(cycle GAN)을 정형 데이터의 구조에 맞게 재구성하고 이를 SMOTE(synthetic minority oversampling technique) 기법과 결합한 하이브리드 오버샘플링 기법을 제안하였다. 특히 기존 연구와 달리 생산적 적대 신경망을 구성함에 있어 1차원 합성곱 신경망(1D-convolutional neural network)을 사용함으로써 기존 연구의 한계를 극복하고자 하였다. 본 연구에서 제안한 기법의 성능 비교를 위해 불균형 정형 데이터를 기반으로 오버샘플링을 진행하고 그 결과를 SMOTE, ADASYN(adaptive synthetic sampling) 등과 같은 기존 기법과 비교하였다. 비교 결과 차원이 많을수록, 불균형 정도가 심할수록 제안된 모형이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 기존 연구와 달리 정형 데이터의 구조를 유지하면서 소수 클래스의 특징을 반영한 오버샘플링을 통해 분류의 성능을 향상시켰다는 점에서 의의가 있다.
본 연구는 P2P 대부 플랫폼에서 우수 대출자를 예측시 유용한 합성 소수집단 오버샘플링 기법을 제안하고 그 성과를 실증적으로 검증하고자 한다. P2P 대부 관련 우수 대출자를 추정할 때 일어나는 문제점중의 하나는 클래스 간 불균형이 심하여 이를 해결하지 않고서는 우수 대출자 예측이 쉽지 않다는 점이다. 이러한 문제를 해결하기 위하여 본 연구에서는 SMOTE, 즉 합성 소수집단 오버샘플링 기법을 제안하고 LendingClub 데이터셋에 적용하여 성과를 검증하였다. 검증결과 SMOTE 방법은 서포트 벡터머신, k-최근접이웃, 로지스틱 회귀, 랜덤 포레스트, 그리고 딥 뉴럴네트워크 분류기와 비교하여 통계적으로 우수한 성과를 보였다.
최근 사이버보안 패러다임의 변화에 따라, 인공지능 구현 기술인 기계학습과 딥러닝 기법을 적용한 이상탐지 방법의 연구가 증가하고 있다. 본 연구에서는 공개 데이터셋인 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 GRU(Gated Recurrent Unit) 신경망 기반 침입 탐지 모델의 이상(anomaly) 탐지 성능을 향상시킬 수 있는 데이터 전처리 기술에 관한 비교 연구를 수행하였다. 또한 정상 데이터와 공격 데이터 비율에 따른 클래스 불균형 문제를 해결하기 위해 DCGAN(Deep Convolutional Generative Adversarial Networks)을 적용한 오버샘플링 기법 등을 사용하여 오버샘플링 비율에 따른 탐지 성능을 비교 및 분석하였다. 실험 결과, 시스템 콜(system call) 특성과 프로세스 실행패스 특성에 Doc2Vec 알고리즘을 사용하여 전처리한 방법이 좋은 성능을 보였고, 오버샘플링별 성능의 경우 DCGAN을 사용하였을 때, 향상된 탐지 성능을 보였다.
최근 사이버 공격의 지능화와 다양화로 인해 네트워크 보안의 중요성이 더욱 부각되고 있다. 특히, 악성코드를 포함한 악성 패킷은 시스템 감염 및 정보 유출과 같은 심각한 피해를 초래할 수 있으므로 이를 효과적으로 탐지하고 차단할 수 있는 기술 개발이 필수적이다. 기존의 인공지능 기반 침입 탐지 시스템은 다양한 성능 지표(정확도, 정밀도, 재현율 등)의 균형을 맞추기 위해 단일 분류 모델을 기반으로 구축되어 왔다. 본 연구에서는 모든 악성 패킷을 놓치지 않고 탐지하기 위해, 특히 리콜(Recall) 지표를 극대화하는 것을 목표로 하여 오버샘플링 기법을 적용하였다. 이를 통해 기존 시스템의 한계를 보완하고, 모든 사이버 공격에도 효과적으로 대응할 수 있는 새로운 성능 평가 기준의 필요성을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.