DOI QR코드

DOI QR Code

A Deep Learning Based Over-Sampling Scheme for Imbalanced Data Classification

불균형 데이터 분류를 위한 딥러닝 기반 오버샘플링 기법

  • 손민재 (고려대학교 전기전자공학과) ;
  • 정승원 (고려대학교 전기전자공학과) ;
  • 황인준 (고려대학교 전기전자공학과)
  • Received : 2019.02.12
  • Accepted : 2019.05.07
  • Published : 2019.07.31

Abstract

Classification problem is to predict the class to which an input data belongs. One of the most popular methods to do this is training a machine learning algorithm using the given dataset. In this case, the dataset should have a well-balanced class distribution for the best performance. However, when the dataset has an imbalanced class distribution, its classification performance could be very poor. To overcome this problem, we propose an over-sampling scheme that balances the number of data by using Conditional Generative Adversarial Networks (CGAN). CGAN is a generative model developed from Generative Adversarial Networks (GAN), which can learn data characteristics and generate data that is similar to real data. Therefore, CGAN can generate data of a class which has a small number of data so that the problem induced by imbalanced class distribution can be mitigated, and classification performance can be improved. Experiments using actual collected data show that the over-sampling technique using CGAN is effective and that it is superior to existing over-sampling techniques.

분류 문제는 주어진 입력 데이터에 대해 해당 데이터의 클래스를 예측하는 문제로, 자주 쓰이는 방법 중의 하나는 주어진 데이터셋을 사용하여 기계학습 알고리즘을 학습시키는 것이다. 이런 경우 분류하고자 하는 클래스에 따른 데이터의 분포가 균일한 데이터셋이 이상적이지만, 불균형한 분포를 가지고 경우 제대로 분류하지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 Conditional Generative Adversarial Networks(CGAN)을 활용하여 데이터 수의 균형을 맞추는 오버샘플링 기법을 제안한다. CGAN은 Generative Adversarial Networks(GAN)에서 파생된 생성 모델로, 데이터의 특징을 학습하여 실제 데이터와 유사한 데이터를 생성할 수 있다. 따라서 CGAN이 데이터 수가 적은 클래스의 데이터를 학습하고 생성함으로써 불균형한 클래스 비율을 맞추어 줄 수 있으며, 그에 따라 분류 성능을 높일 수 있다. 실제 수집된 데이터를 이용한 실험을 통해 CGAN을 활용한 오버샘플링 기법이 효과가 있음을 보이고 기존 오버샘플링 기법들과 비교하여 기존 기법들보다 우수함을 입증하였다.

Keywords

JBCRJM_2019_v8n7_311_f0001.png 이미지

Fig. 1. CGAN Training Process

JBCRJM_2019_v8n7_311_f0002.png 이미지

Fig. 2. Classification Training Process

JBCRJM_2019_v8n7_311_f0003.png 이미지

Fig. 3. Data Distribution Generated by Cgan

JBCRJM_2019_v8n7_311_f0004.png 이미지

Fig. 4. AUC Comparison of Classification Models

Table 1. Used Datasets

JBCRJM_2019_v8n7_311_t0001.png 이미지

Table 2. Performance Comparison of Over-sampling Methods and Classification Models

JBCRJM_2019_v8n7_311_t0002.png 이미지

Table 3. Result of Wilcoxon signed-rank test

JBCRJM_2019_v8n7_311_t0003.png 이미지

References

  1. R. O'Brien and H. Ishwaran, "A random forests quantile classifier for class imbalanced data," Pattern Recognition, Vol.90, pp.232-249, 2019. https://doi.org/10.1016/j.patcog.2019.01.036
  2. G. Haixiang, et al., "Learning from class-imbalanced data: Review of methods and applications," Expert Systems with Applications, Vol.73, pp.220-239, 2017. https://doi.org/10.1016/j.eswa.2016.12.035
  3. S. J. Salvatore, et al., "Cost-based modeling for fraud and intrusion detection: Results from the JAM project," in Proceedings of the DARPA Information Survivability Conference and Exposition, Washington, pp.130-144, 2000.
  4. C. X. Ling and C. Li. "Data mining for direct marketing: Problems and solutions," in Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, pp.73-79, 1998.
  5. J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, "Experimental perspectives on learning from imbalanced data," in Proceedings of the ACM International Conference on Machine Learning, New York, pp.935-942, 2007.
  6. X. Y. Liu, J. Wu, and Z. H. Zhou, "Exploratory undersampling for class-imbalance learning," IEEE Transactions on Systems, Man, and Cybernetics, Vol.39, No.2, pp.539-550, 2009. https://doi.org/10.1109/TSMCB.2008.2007853
  7. N. V. Chawla, et al., "SMOTE: synthetic minority oversampling technique," Journal of Artificial Intelligence Research, Vol.16, pp.321-357, 2002. https://doi.org/10.1613/jair.953
  8. H. He, et al., "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," in Proceedings of the IEEE International Joint Conference on Neural Networks, pp.1322-1328, 2008.
  9. H. Han, W. Y. Wang, and B. H. Mao, "Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning," in Proceedings of the International Conference on Intelligent Computing, Berlin, pp.878-887, 2005.
  10. M. Mirza and S. Osindero, "Conditional generative adversarial nets," arXiv preprint arXiv:1411.1784, 2014.
  11. I. J. Goodfellow, et al., "Generative adversarial nets," in Proceedings of the Neural Information Processing Systems, pp.2672-2680, 2014.
  12. H. M. Nguyen, E. W. Cooper, and K. Kamei, "Borderline Over-Sampling for Imbalanced Data Classification," International Journal of Knowledge Engineering and Soft Data Paradigms, Vol.3, No.1, pp.4-21, 2011. https://doi.org/10.1504/IJKESDP.2011.039875
  13. C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, Vol.20, No.3, pp.273-297, 1995. https://doi.org/10.1007/BF00994018
  14. T. Jo and N. Japkowicz, "Class Imbalances versus Small Disjuncts," ACM Special Interest Group on Knowledge Discovery in Data, Vol.6, pp.40-49, 2004.
  15. N. Macia, E. Bernado-Mansilla, and A Orriols-Puig, "A.Preliminary Approach in Synthetic Data Sets Generation based on Class Separability Measure," in Proceedings of the International Conference on Pattern Recognition, pp.1-4, 2008.
  16. H. Y. Wang, "Combination Approach of SMOTE and Biased-SVM for Imbalanced Datasets," in Proceedings of the International Joint Conference on Neural Networks, pp. 228-231, 2008.
  17. C. H. Hoi, et al., "Biased support vector machine for relevance feedback in image retrieval," in Proceedings of the IEEE International Joint Conference on Neural Networks, 2004.
  18. G. E. Batista, R. C. Prati, and M. C. Monard, "A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data," ACM SIGKDD Explorations Newsletter, Vol.6, No.1, pp.20-29, 2004. https://doi.org/10.1145/1007730.1007735
  19. D. L. Wilson, "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data," IEEE Transactions on Systems Man and Communications(SMC), Vol.3, pp.408-421, 1972. https://doi.org/10.1109/TSMC.1972.4309137
  20. I. Tomek, "Two Modifications of CNN," IEEE Transactions on Systems Man and Communications(SMC), Vol.6, pp.769-772, 1976.
  21. Y. Liu, A. An, and X. Huang, "Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles," in Proceedings of the Tenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, pp. 107-118, 2006.
  22. A. Dal Pozzolo and G. Bontempi, "Adaptive machine learning for credit card fraud detection." 2015.
  23. MineThatData [Internet], http://www.minethatdata.com.
  24. S. Moro, P. Cortez, and P. Rita, "A data-driven approach to predict the success of bank telemarketing," Decision Support Systems, Vol.62, pp.22-31, 2014. https://doi.org/10.1016/j.dss.2014.03.001
  25. A. Liaw and M. Wiener, "Classification and regression by randomForest," R News, Vol.2, No.3, pp.18-22, 2002.
  26. S. S. Haykin, "Neural networks and learning machines," Vol. 3, Upper Saddle River:Pearson, 2009.
  27. V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines." in Proceedings of the 27th international conference on machine learning (ICML-10), Haifa, pp.807-814, 2010.
  28. D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization." in Proceedings of 3rd International Conference on Learning Representations, San diego, 2014.
  29. I. Jolliffe, "Principal component analysis," International Encyclopedia of Statistical Science, Springer, Berlin, Heidelberg, pp.1094-1096, 2011.
  30. G. W. Corder and D. I. Foreman, "Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach," John Wiley & Sons, 2014.