• Title/Summary/Keyword: 오목 표면

Search Result 21, Processing Time 0.022 seconds

Image Enhancement for 3D Shape Measurement Using Large Aperture Projection System (오목거울을 이용한 3차원 형상측정을 위한 모아레 영상 획득 방법)

  • Yoon, Doo-Hyun;Kim, Hak-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2008
  • In general, a lens with large NA makes image quality better. There are many kinds of cheap concave mirrors with large aperture and NA. This paper presents a method that uses a large aperture projection imaging system to enhance the image used for 3D shape measurement. This method makes it possible to enhance reflection uniformity on the object surface and increases SNR (Signal to Noise Ratio). Using a large aperture lens, it is possible to obtain a brighter image, reducing the shading nature in the image boundary, and enhancing the reflection uniformity even on woven surfaces. Because of the exorbitant cost of a large aperture projection lens larger than 150 mm in diameter, a refractive lens was exchanged with a concave mirror resulting in the same optical effect. In experiment, changing NA $0.15{\sim}0.8$, image contrast was enhanced from 46 to 1.33. Incidentally, the effect of the concave mirror was tested successfully through the experiment.

Taxonomic Implications of Seed Coat in the Subtribe Calthinae (Ranunculaceae) (미나리아재비과 동의나물아족의 종피형태와 분류학적 검토)

  • Heo, Kweon;Suh, Youngbae
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Anatomical features of seed coat were examined on Trollius, Calathodes, and Caltha of Ranunculaceae to evaluate the taxonomic circumscription of Megaleranthis saniculifolia, which is monotypic and endemic in Korea. Megaleranthis saniculifolia showed the exotestal type of seed coat exhibiting a well-developed palisade structure in exotesta and its external surface of exotesta cells was concave. On the other hand, the shape of exotesta cells in Caltha was cuboidal and the outer surface was smooth. The exotesta of Calathodes seeds was formed of the palisade structure like M. saniculifolia, but the outer surface of exotesta cells was smooth. The palisade structure was much better developed in the exotesta of Calathodes as well as Megaleranthis seeds than in the exotesta of Trollius seeds. The outer surface of exotesta cells in Trollius was either convex or concave according to the species examined. Since the genera of the subtribe Calthinae of the family display differences in seed sculpturing and the anaotmy of seed coat, these characteristics are useful to access taxonomic relationships among them. The morphological and anatomical features of seed coat suggest that Megaleranthis be possibly allied with Trollius rather than Caltha or Calathodes. Concave surface of seed coat cells and well-developed palisade structure of exotesta are shared by M. saniculifolia and some species of Trollius in common.

A Study on the Heat Transfer Characteristics of Turbulent Round Jet Impinge on the Inclined Concave Surface Using Transient Liquid Crystal Method (과도액정 기법을 이용한 오목표면 경사각도에 따른 난류 충돌 제트의 열전달 특성에 관한 연구)

  • Lim Kyoung-Bin;Lee Chang-Hee;Lee Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.656-662
    • /
    • 2006
  • The effects of concave hemispherical surface with inclined angle on the local heat transfer from a turbulent round jet impinging were experimentally investigated using transient liquid crystal method. This method suddenly exposes a preheated wall to an impinging jet and then the video system records the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers were used 11000, 23000 and 50000, nozzle-to-surface distance ratio from 2 to 10 and the surface angles $\alpha=0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Correlations of the stagnation point Nusselt number according to Reynolds number, jet-to-surface distance ratio and dimensionless surface angle are investigated. In the stagnation point, in term of $Re^n$, n ranges from 0.43 in case of $2{\leq}L/d\leq6$ to 0.45 in case of $6. The maximum Nusselt number occurs in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. The maximum displacement is about 0.7 times of the jet nozzle diameter.

Turbulent Heat Transfer of an Oblique Impinging Jet on a Concave Surface (오목표면에 분사되는 경사충돌제트의 난류열전달 현상에 관한 연구)

  • 임경빈;최형철;이세균;최상경;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.371-380
    • /
    • 2000
  • The turbulent heat transfer from a round oblique impinging jet on a concave surface were experimentally investigated. The transient measurement method using liquid crystal was used in this study. In this measurement, a preheated wall was suddenly exposed to an impinging jet while recording the response of liquid crystals to measure surface temperature. The Reynolds numbers were 11000, 23000 and 50000, nozzle-to-surface distance ratio was from 2 to 10 and the surface angles were a =$0^{\circ}\;15^{\circ},\;30^{\circ}and\;40^{\circ}$. Correlations of the stagnation point Nusselt numbers with Reynolds number, jet-to-surface distance ratio and dimensionless surface angle, which account for the surface inclined angle, are presented. The maximum Nusselt numbers, in this experiment, occurred in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. In this experiment, the maximum displacement is about 0.7 times of the jet nozzle diameter when surface curvature, D/d is 10.

  • PDF

Measurement of the Local Heat Transfer Coefficient on a Concave Surface with a Turbulent round Impinging Jet (오목표면에 분사되는 난류원형충돌제트에 대한 국소열전달계수 측정에 관한 연구)

  • Lim, K.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.112-119
    • /
    • 1995
  • Measurements of the local heat transfer coeffcients on a spherically concave surface with a round impinging jet are presented. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers used were 1,000, 23,000 and 50,000 and the nozzle-to-jet distance was L/d=2, 4, 6, 8, 10. Presented results are compared to previous measurements for flat plate. In the experiment, the local heat transfer Nusselt numbers on a concave surface are higher than those on a flat plate. Maximum Nusselt number at all region occured at L/d=6 and second maximum in the Nusselt number occured at R/d=2 for both Re=50,000 and Re=23,000 in case of L/d=2 and for only Re=50,000 in case of L/d=4. All other cases exhibit monotonically decreasing value of the Nusselt number along the curved surface.

  • PDF

Local Heat Transfer Characteristics of Array Impinging Jets with Channel flow on the Concave Surface (채널유동성분이 존재하는 오목 충돌면에서 배열충돌제트에 의한 국소 열전달 특성 고찰)

  • Lee, Won-Hee;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1098-1103
    • /
    • 2004
  • In this study, the effect of channel flow in the concave surface on local heat transfer characteristics of array jets was investigated experimentally. A TLC method is employed to determine local heat transfer coefficients on the target plate and also flow visualization has been conducted to investigate the behavior of a row of impinging jets and array of impinging jets. Two different array patterns of impinging array jets devices are tested for Reynolds number(Re=10,000). In a row of impinging jets, secondary vortex is strongly maintained by main vortex at nozzle-to-plate distance of H/d=2. Therefore, the Nusselt number slowly decreased at the mid-way region between adjacent jets. In array jets, the local maximum Nusselt number region move further in the downstream direction due to the increase of channel flow velocity.

  • PDF

Local Scour in the Vicinity of Riblet Type Piers (파상형 교각 주위에서의 국부세굴 특성)

  • Kim, Ki-Hyun;Hong, Chang-Bae;Lee, Seong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1706-1710
    • /
    • 2007
  • 하천의 교각주위에는 국부세굴현상과 이에 따른 퇴적현상이 나타난다. 특히 교각주위에서의 국부세굴특성은 교량의 안전성과 관련하여 중요한 문제가 되므로 세굴의 크기를 감소하기 위한 대책이 필요하다. 교각주위에서의 국부세굴현상은 교각부 인근에 형성되는 말발굽형 와류가 중요한 역할을 하고 있는 것으로 알려져 있다. 따라서 교각주위에서의 수류변화를 적절히 제어함으로서 세굴특성을 감소하고자 하는 연구가 행해져 오고 있으며, 교각에 원환(collars)을 설치하거나 조도를 증가시킴으로 세굴감소 대책을 제안하고 있다(Zarrati et al, 2006). 본 연구에서는 교각주위에서의 세굴을 감소하기 위해 원주교각의 표면을 파상형(riblet type)으로 하였으며, 파상형교각의 기본개념은 원주교각 전면에 나타나는 하강류를 파상형 원주내로 흡수하여 세굴작용을 감소시키고자 하는 것이다. 이같은 형식은 원주형 교각에 원환을 설치하는 방법이 대표적이며 하상과 교각사이 경계부에 수평방향의 단일 파형(single riblet type)을 설치한 Sato et al(1993)의 연구가 있다. 이들의 결과에 의하면 원형교각과 비교하여 초기 세굴감소 효과가 있음을 확인하였으나 시간경과에 따라 세굴이 점차 증가하고 있는 바 그 원인으로서 세굴이 진행되면서 하상면과 단일 파형과의 간격이 확대하여 단일파형내로의 흐름흡수 효과가 감소하기 때문으로 보고되었다. 따라서 여기서는 이같은 문제를 해결하기 위해 다단의 오목 및 볼록 파상형(concave/convex riblet type) 원주교각에 대한 국부세굴 특성을 검토하였다. 또한 원주형의 교각에서는 단일원주보다는 원주군으로 설치되는 경우가 대부분이며 이때 교각의 직경(D)에 대한 교각 사이 간격$(L_d)$의 비$(L_d/D)$에 따른 전면교각에서의 수류변화의 영향이 후면교각에 작용하여 상호 복합적인 흐름 및 세굴특성을 나타내므로 이와 같은 복렬형 원주군의 세굴특성을 파상형 원주교각에 적용하여 국부세굴의 크기 변화를 해석하였다. 따라서, 교각주위에서의 수류특성 및 세굴의 변동은 원주군 및 교각파상의 크기와 간격 등과 같은 구조물의 배열조건과 Froude 수, 수심 등의 수리학적 조건에 따라 달라지므로 이의 조건을 체계적으로 변화시켜 가면서 교각주위에서의 국부세굴 및 세굴 감소특성을 검토하였다. 실험결과 오목 및 볼록 파상형 원주 주위에서의 세굴크기는 원형원주와 비교하여 전체적으로 감소하는 것으로 확인되었으며 특히 오목형 $B/\acute{h}=3$에서는 세굴경감효과가 탁월하여 70%이상 감소하는 것으로 확인되었으나 볼록형 $B/\acute{h}=5$에서는 세굴촉진특성이 나타나고 있는 것으로 나타났다. 따라서, 파상형 원주에서는 하강류나 와류를 파상형의 내부로 유도하여 세굴의 크기를 조절할 수 있는 최적의 파상이 존재하고 있는 것으로 예측되었다.

  • PDF

Preparation of Poly(vinyl acetate)/Silver Hollow Microspheres via Suspension Polymerization (현탁중합에 의한 폴리(비닐 아세테이트)/은 중공 미세입자의 제조)

  • Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.390-394
    • /
    • 2011
  • Effects of silver nanoparticles on the polymerization rate and morphology of poly(vinyl acetate) (PVAc)/silver microspheres prepared by suspension polymerization of VAc were investigated. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and atomic absorption spectrometry were used to characterize the morphology and properties of the PVAc/silver microspheres. Due to the change of hydrophilicity of silver nanoparticles, appearance of the microspheres having golf ball-like convave surfaces was observed. Under controlled concentration of surfactant, PVAc/silver microspheres with various hollow structures were synthesized. In the case of silver nanoparticles modified by surfactant, the polymerization rate increased slightly. PVAc/silver microspheres with a conversion up to 80% were prepared via suspension polymerization.

Effect of Transverse Convex Curvature on Turbulent Fluid Flow in Fuel Channel (핵연료 수로내 난류 유동에 대한 횡방향 볼록구배의 영향)

  • Lee, Yung;Ahn, Seung-Hoon;Kim, Hyong-Chol
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.440-452
    • /
    • 1994
  • Nuclear fuel bundles are designed such that the heat flux at a-fuel pin surface should not exceed the critical heat flux (CHF) during normal operation and anticipated transient. Therefore, evaluation of the CHF for fuel bundle is demanded in an exact and reliable manner. One of the major concerns with the current application of CHF correlations is that the CHF based on circular tubes is applied to the fuel bundle subchannel analysis, mainly in terms of the hydraulic diameter with correction factors which may result in a source of possibly large uncertainties in CHF prediction. The hydraulic diameter does not recognize the local properties of fluid nor such effect as the surface curvature; the turbulence action on the convex surface is much more pronounced than that on the concave surface. Even for the tube having concave curvature, the effect of tube diameter on CHF becomes important with decreasing diameter. These facts imply that the convex curvature effect is significant and crucial to the reliable CHF prediction. This paper reviews and discusses analytical and experimental aspects of effect of transverse convex curvature in incompressible turbulent flow and heat transfer, and on CHF. Flow models to quantify this effect are briefly mentioned and future works are recommended.

  • PDF

The Effects of Drag Reduction by Flow Control Grooves using CFD (CFD를 이용한 유동제어 띠에 의한 저항감소 효과 조사)

  • Park, Dong-Woo;Yoon, Hyun-Sik;Koo, Bon-Guk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.335-341
    • /
    • 2014
  • Faced with global agenda of greenhouse abatement program including regulations and $CO_2$ emission trading scheme, shipping companies are enforced to a high level of efficiency in fuel consumption. Accordingly shipbuilding companies worldwide are required to develop fuel-efficient ships which otherwise traditionally consume a great amount of fossil fuels. In this dissertation, relevant to the improvement of fuel efficiency for commercial ships, design methodology through the numerical simulations are intensively described. This work consists of derivation of effective hydrodynamic design practice based on the application of longitudinal grooves to effectively improve the pressure distribution around ship hull. The primary objective of the present study is to improve ship resistance performance using longitudinal grooves which originate from long strips on the abdomen of humpback whale. Several groove shapes have been extensively investigated and the proposed shape efficiently controlled the variation of pressure distributions acting on the hull surface.