• 제목/요약/키워드: 예혼합기연소

검색결과 186건 처리시간 0.028초

메탄-공기 예혼합기의 열면점화에 미치는 촉매반응 및 자연대류의 영향 (Effects of Catalytic Reaction and Natural Convection on the Hot Surface Ignition of Methane-Air Mixtures)

  • 김형만;정종수
    • 한국연소학회지
    • /
    • 제2권1호
    • /
    • pp.29-38
    • /
    • 1997
  • In this study, the experimental and numerical investigations of the ignition of methane-air mixtures by a electrically heated wire have been carried out. In order to define the initial condition and make the analysis simple, the following control unit was developed; which heats the wire to the setting temperature in a very short time, and maintains the wire temperature constant until ignition. Experiments with the feedback control have been performed using nickel and platinum wires in normal gravity and microgravity. From experimental results, ignition temperatures in normal gravity are higher than those in microgravity, however, the dependences of ignition temperature on equivalence ratio are not affected by natural convection. Numerical calculations, including catalytic reaction for platinum, have been performed to analyze the experimental results in microgravity. Numerical results show that reactants near platinum wire are consumed by catalytic reaction, therefore, the higher temperature is needed to ignite the mixture with platinum wire.

  • PDF

실시간 공연비 제어를 위한 화염 자발광 측정 실험 (An Experiment of Flame Chemiluminescence Measurement for Real Time Air/Fuel Ratio Control)

  • 이진기;권민준;이창엽;김세원;신명철
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.29-30
    • /
    • 2012
  • The objectives of this study are to examine the variation of flame chemiluminescence on flame condition and to evaluate the possibility to apply the optical sensor for air/fuel ratio control. Flame chemiluminescence is one of the most important factor to judge the real time flame condition like a air/fuel ratio. In this paper, it is experimentally found that a strong relationship between the air/fuel ratio and optical element output (i.e., photo diode) should be existed. This is verified through the flame spectral analysis for various PD output signal.

  • PDF

수소 예혼합기의 정상 및 이상연소에 관한 수치해석 (A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture)

  • 손채훈;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성 (Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

가스터빈에서 SNG 연료 조성에 대한 희석제의 배기배출물 저감효과에 대한 실험적 연구 (Experimental Study on Dilution Effect of Exhaust Gas in SNG Combustion on a Model Gas Turbine)

  • 주성필;윤지수;김정진;김성헌;윤영빈
    • 한국항공우주학회지
    • /
    • 제44권7호
    • /
    • pp.603-610
    • /
    • 2016
  • 본 논문에서는 석탄으로부터 생성된 합성천연가스(SNG)의 다양한 연료 조성에 대한 배기가스 배출 특성 및 희석제에 대한 NOx배출 저감에 대해 기술하였다. 예혼합거리가 짧은 부분 예혼합 가스터빈 연소기에서 SNG 연료조성에서의 수소 비율과 입열량, 당량비를 조절해 가며 연소특성을 관찰하였다. 수소 비율에 따른 NOx 배출지수는 유사하게 나타났고, 화염가시화를 통해 화염의 특성을 파악할 수 있었다. CO 배출의 경우 당량비 1 구간에서 특이점이 나타났으며, 이를 화염의 자발광 이미지와 자발광 강도를 통하여 원인을 파악할 수 있었다. 또한 높은 NOx 배출을 저감하기 위하여 질소($N_2$)와 이산화탄소($CO_2$) 희석제를 사용하여 희석제 공급량에 대한 저감 효과를 파악하였다. 이로부터 희석제의 비열과 열용량이 연소로부터 발생한 연소열을 흡수하여 열화에 의한 NOx 배출을 저감하는 효과를 확인하였다.

밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성 (Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum)

  • 최원영;권세진
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF

자열증발된 액체연료를 적용한 원통형 예혼합 연소기의 연소특성 (Combustion Characteristics of Cylindrical Premixed Combustor using Liquid Fuel by Self Evaporation)

  • 이필형;송기종;황상순
    • 한국연소학회지
    • /
    • 제21권3호
    • /
    • pp.7-15
    • /
    • 2016
  • The fuel in conventional liquid fuel combustor is atomized by spray method for high efficiency and low emissions. To improve the overall fuel efficiency and lower pollutant emissions in liquid fuel combustion systems, the effective spatial and temporal separation of droplet evaporation from normal spray process is needed. In this paper, the recuperation of high temperature burnt gas for fuel evaporation was proposed to develop a cylindrical premixed combustor. The recuperation process using U shaped tube is effective to evaporate the liquid fuel. The results show that the flame mode is changed into red radiation flame, blue flame and lift off flame with decreasing equivalence ratio as gas fuel combustion mode. In particular, the blue flame is found to be very stable at heating load 9.2 kW and equivalence ratio 0.731. NOx was measured blow 105 ppm ($O_2$ zero base) from equivalence ratio 0.705 to 0.835. CO which is a very important emission index in liquid fuel combustor was observed below 5 ppm ($O_2$ zero base) under the same equivalence region.

온라인 개방코드 OSCILOS를 이용한 모델 희박 예혼합 가스터빈 연소기의 연소불안정 해석 사례 (A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS)

  • 차동진;송진관;이종근
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.10-18
    • /
    • 2015
  • Combustion instability is a major issue in design and maintenance of gas turbine combustors for efficient operation with low emissions. With the thermoacoustic view point the instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to study the combustion dynamics of gas turbine combustors, Morgans et al (2014) have developed OSCILOS (open source combustion instability low order simulator) code and it is currently available online. In this study the code has been utilized to predict the combustion instability of a reported case for lean premixed gas turbine combustion, and then its prediction results have been compared with the corresponding experimental data. It turned out that both the predicted and the experimental combustion instability results agree well. Further the effects of some typical inlet acoustic boundary conditions on the prediction have been investigated briefly. It is believed that the validity and effectiveness of the open source code is reconfirmed through this benchmark test.

1D Lumped Method를 이용한 모형 부분 예혼합 가스터빈 연소기의 연소불안정 해석 (Combustion Instability Analysis of Partially Premixed Model Gas Turbine Combustor with 1D Lumped Method)

  • 김정진;윤지수;주성필;김성헌;손채훈;윤영빈
    • 한국연소학회지
    • /
    • 제22권1호
    • /
    • pp.39-45
    • /
    • 2017
  • Combustion instability analysis of partially premixed model gas turbine combustor was conducted with 1D lumped method. Flame Transfer Function(FTF) was obtained with variation of fuel composition by Photo Multiplier Tube(PMT) and Hot Wire Anemometry(HWA). Decreasing instability frequency was observed when combustor length increased and multi-mode instability was confirmed. Instability frequency mode was changed while $H_2$ composition rate was increased and had agreement with experimental value. This work confirms that prediction of longitudinal combustion instability mode of partially premixed combustor is possible using 1D lumped method.

모형연소기에서 연료-공기의 혼합정도 및 당량비가 NOx 배출과 열 방출량에 미치는 영향에 대한 연구 (Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor)

  • 조봉국;최도욱;김규보;장영준;송주헌;전충환
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.658-665
    • /
    • 2009
  • Lean premixed combustors are used for significant NOx reduction which one of issues in current gas turbine combustor. This study was investigated to estimate the effects of the unmixedness of fuel-air, equivalence ratio on the instability mechanism, NOx emission and combustion oscillation in a lean premixed combustor. The experiments were conducted in a dump combustor at atmospheric pressure conditions using methane as fuel. The swirler angle was $45^{\circ}$, the degrees of fuel-air mixing were 0, 50 and 100 and inlet temperature was 650K. The equivalence ratio was ranging from 0.5 to 0.8. This paper shows that NOx emission was increased when the degree of fuel-air mixing is increased in same equivalence ratio and when equivalence ratio is increased. And the range of the combustion instability was enlarged as a function of increasing of the degree of fuel-air mixing.