• Title/Summary/Keyword: 예측.활용력

Search Result 686, Processing Time 0.029 seconds

다중회귀분석 및 인공신경망을 이용한 자갈다짐말뚝 개량지반의 극한 지지력 예측 (Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network)

  • 봉태호;김병일
    • 한국지반공학회논문집
    • /
    • 제33권6호
    • /
    • pp.27-36
    • /
    • 2017
  • 자갈다짐말뚝(Gravel Compaction Pile) 공법은 연약지반 개량공법 중의 하나로 육상 및 해상에서 연약 지반을 개량하기 위해 많이 사용되어 왔다. 자갈다짐말뚝으로 보강된 지반의 극한 지지력은 자갈다짐말뚝 및 지반의 강도, 치환율, 시공조건 등에 영향을 받으며 이를 예측하기 위한 다양한 예측식이 제안되었다. 하지만 기존 예측식을 활용한 극한지지력 예측은 오차율 및 변동성이 매우 크며, 실제 설계에 활용하기에는 부적합한 것으로 나타났다. 본 연구에서는 자갈다짐말뚝으로 보강된 지반의 극한 지지력을 예측하기 위하여 현장 재하시험결과를 활용한 다중회귀분석을 수행하였으며, 단일잔류 교차검증에 따른 예측오차평가를 통하여 가장 효율적인 입력변수를 선정하고 이에 대한 극한 지지력 예측식을 제안하였다. 또한 선정된 입력변수를 활용하여 인공신경망 적용에 따른 극한 지지력 예측오차를 평가하고 이를 기존 예측식에 따른 결과와 비교 분석하였다.

효율적인 수자원관리를 위한 범주형 확률장기예보의 예측력 평가 및 정량화 (Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management)

  • 손찬영;정예림;한수희;조영현
    • 한국수자원학회논문집
    • /
    • 제50권8호
    • /
    • pp.563-577
    • /
    • 2017
  • 기후변화로 인해 강수의 불확실성이 증가하는 현 시점에서 효율적인 물 관리를 위한 계절예측 및 기상 예보의 활용은 필수적이다. 본 연구에서는 기상청에서 2014년 6월부터 시행하고 있는 범주형 확률장기예보를 Hit Rate, Reliability Diagram, Relative Operating Curve (ROC)의 평가지표를 활용하여 예측력을 검증하였고, 추가적으로 확률예보를 활용하여 정량적인 예측 강수량을 생산하는 기법을 제안하였다. 확률장기예보의 예측력 검증결과 최대 48%의 예측력을 갖는 것을 확인할 수 있었다. 확률예보를 활용하여 예측 강수량을 추정한 결과, 정량적으로 관측 자료와 유사하게 모의되는 것을 확인할 수 있었으며 예측 적합도 평가결과 100%의 정확도를 가진 예보의 경우 최대 0.98, 실제 예보의 경우 최대 0.71의 상관계수를 보였다. 본 연구에서 제안하는 확률예보를 활용한 예측 강수량 추출기법은 강수의 불확실성을 고려한 물 관리를 가능하게 해줄 것으로 판단되며 효율적인 수자원 장기 이수계획 및 저수지 운영의 의사결정지원 등에 활용 가능할 것으로 기대된다.

머신 러닝 기법을 활용한 박스오피스 관람객 예측 (Prediction of Movies Box-Office Success Using Machine Learning Approaches)

  • 박도균;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.15-18
    • /
    • 2020
  • 특정 영화의 스크린 독과점이 꾸준히 논란이 되고 있다. 본 논문에서는 영화 스크린 분배의 불평등성을 지적하고 이에 대한 개선을 요구할 근거로 머신러닝 기법을 활용한 영화 관람객 예측 모델을 제안한다. 이에 따라 KOBIS, 네이버 영화, 트위터, 구글 트렌드에서 수집한 3,143개의 영화 데이터를 이용하여 랜덤포레스트와 그라디언트 부스팅 기법을 활용한 영화 관람객 예측 모델을 구현하였다. 모델 평가 결과, 그라디언트 부스팅 모델의 RMSE는 600,486, 랜덤포레스트 모델의 RMSE는 518,989로 랜덤포레스트 모델의 예측력이 더 높았다. 예측력이 높았던 랜덤포레스트 모델을 활용, 상영관을 크게 확보하지 못 했던 봉준호 감독의 영화 '옥자'의 상영관 수를 조절하여 관람객 수를 예측, 6,345,011명이라는 결과를 제시한다.

  • PDF

동절삭력 모델 해석 및 응용

  • 김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1990년도 춘계학술대회 논문집
    • /
    • pp.1-14
    • /
    • 1990
  • 공작기계를 설계하거나 이의 경제적인 사용을 위해서는 가장 기본적으로 절삭력의 예측이 필요하며, 절삭력의 예측 정밀도를 향상 시키기 위해서는 공작기계의 구조동력할(machine tool structural dynamics) 과 공구와 공작물 간의 절삭 작용에서 발생되는 동적인 거동 즉 절삭동력학(cutting dynamics)에 대한 이해가 선행되어야 한다. 또한 기계의 구조적 특성과 절삭작용의 특성이 포함된 절삭력을 적절한 센서에 의하여 측정하여 이를 분석함으로서 기계의 구조적 특성이나 절삭작용에 대한 특성을 파악할 수 있다. 본 강연은 동절삭력 모델의 유도 과정과 이 모델을 이용하여 절삭력을 예측한 결과를 정절삭력 모델 및 절삭시험 결과와 비교 하고 절삭력을 활용하여 공구상태의 파악, 절삭상태의 파악, 공작기계의 경제적 이용방법에 활용하는 예를 소개하고자 한다.

비금융 상장기업의 부실예측모형

  • 장휘용
    • 재무관리연구
    • /
    • 제15권1호
    • /
    • pp.299-327
    • /
    • 1998
  • 기업부실예측모형은 관련당사자들에게 부실위험을 사전에 경고함으로써 기업이 실제 부실화되는 경우 발생할 막대한 사회적 비용을 절감시켜 줄 수 있지만 지금까지 개발된 모형의 예측력은 그다지 만족스럽지 못하였다. 본 연구에서는 먼저 기존 부실예측연구의 한계 및 문제점들을 살펴보고, 철저한 실증분석에 근거하여 모형의 예측력 극대화에 실제적으로 기여하는 변수만을 선정함으로써 보다 높은 예측력을 가진 부실예측모형 개발을 시도하였다. 비금융 상장회사에 적용할 목적으로 개발된 본 모형의 자체예측력은 부실기업표본의 경우 85.3%, 비부실표본의 경우 95.1%으로써 기존의 모형들에 비하여 크게 향상되었고, 검정용표본을 이용한 예측력의 경우에도 부실표본 76.5%, 비부실표본 94.2%로서 대폭 개선되었다. 본 모형은 대출심사시 뿐만 아니라 기관투자가들이 주식 및 채권투자를 위한 기업분석에도 매우 유용하게 활용될 수 있고 특히 적격업체의 1차적 판별에 매우 유용할 것으로 예상된다.

  • PDF

수문학적 활용을 위한 레이더와 수치예보모델 예측강우의 실시간 병합 기법 개발 (Real-time blending method development of radar-based QPF and numerical weather prediction models for hydrological application)

  • 윤성심;이동률
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.99-99
    • /
    • 2018
  • 기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.

  • PDF

일상어휘를 기반으로 한 선물 가격 예측모형의 계발

  • 김광용;이승용
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.291-300
    • /
    • 1999
  • 본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어취로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보 유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교 분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형의 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유 비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어취 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.

  • PDF

선물시장과 전문가예측시스템의 가격예측력 비교 - WTI 원유가격을 대상으로 - (Comparison of Price Predictive Ability between Futures Market and Expert System for WTI Crude Oil Price)

  • 윤원철
    • 자원ㆍ환경경제연구
    • /
    • 제14권1호
    • /
    • pp.201-220
    • /
    • 2005
  • 최근 들어, 우리는 유례 없는 국제 유가의 급등현상을 목격하고 있다. 이러한 시점에서, 의문점은 유가에 대한 예측 가능성과 이의 정확도에 관한 것이다. 본 연구에서는 전문가 예측시스템과 비교하여 선물가격의 상대적인 예측력에 관하여 통계적으로 분석하고자 한다. 이를 위해, 미국 텍사스 중질유(WTI)의 현물가격과 선물가격을 활용하여, 예측 정확도에 관한 단순한 형태의 통계적 분석과 함께 분석수단별 예측오차 차이의 유의성에 관한 체계적 분석을 시도하였다. 통계적 검정결과에 따르면, WTI 선물시장을 활용한 예측은 미국 에너지정보기구(EIA)의 예측과 비교하여 뒤지지 않는 것으로 판명되었다. 결과적으로, 석유 생산자와 소비자 모두가 WTI 선물시장을 유가 예측의 유용한 수단으로 활용할 수 있고, 이로써 효율적인 자원배분 측면에서도 유익할 것으로 판단된다.

  • PDF

시공간 의존성 네트워크 위상 및 그래프 신경망을 활용한 설명 가능한 환율 변화 예측 모형 개발 (Explainable Prediction Model of Exchange Rates via Spatiotemporal Network Topology and Graph Neural Networks)

  • 최인수 ;고우성 ;강기민 ;장윤태 ;노유진 ;이지윤 ;김우창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.374-376
    • /
    • 2023
  • 최근 환율 예측에 관한 다양한 연구가 진행되어 왔다. 이러한 추세에 대응하여 본 연구에서는 Pearson 상관 계수 및 상호 정보를 사용하여 외환 시장의 환율 변동을 분석하는 다중 연결 네트워크를 구축하였다. 본 연구에서는 이러한 구성된 환율 변화에 대한 시공간 의존성 네트워크를 만들고 그래프 기계 학습의 잠재력을 조사하여 예측 정확도를 향상시키려고 노력하였다. 본 연구 결과는 선형 및 비선형 종속 네트워크 모두에 대해 그래프 신경망을 활용한 임베딩을 활용하여 기존의 기계 학습 알고리즘과 결합시킬 경우 환율 변화의 예측력이 향상될 수 있음을 경험적으로 확인하였다. 특히, 이러한 결과는 통화 간 상호 의존성에만 의존하여 추가 데이터 없이 달성되었다. 이 접근 방식은 데이터 효율성을 강화하고 그래프 시각화를 통해 설명력 있는 통찰력을 제공하며 주어진 데이터 세트 내에서 효과적인 데이터를 생성하여 예측력을 높이는 결과로 해석할 수 있다.

수요예측시스템 상의 다양한 예측방법의 예측력 비교 (The Comparison of Prediction Capability from Various Prediction methods on Demand.)

  • 김도관
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.137-139
    • /
    • 2017
  • 생산 분야에서는 최적의 수요예측을 통해 최적의 생산량을 적용하는 형태로 변모해가고 있다. 본 연구에서는 현재 수요예측 시스템에서 활용되는 다양한 예측방법들의 예측력을 비교하고자 한다. 이를 통해 최적의 예측력을 제공하는 방법론을 탄력적으로 선택하게 하는 방안을 제공하고자 한다.

  • PDF