• Title/Summary/Keyword: 예측 중요도

Search Result 5,679, Processing Time 0.035 seconds

Fast Motion Estimation Algorithm Using Importance of Search Range and Adaptive Matching Criterion (탐색영역의 중요도와 적응적인 매칭기준을 이용한 고속 움직임 예측 알고리즘)

  • Choi, Hong-Seok;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.129-133
    • /
    • 2015
  • In this paper, we propose a fast motion estimation algorithm which is important in the performance of video encoding. Conventional fast motion estimation algorithms have serious problems of low prediction quality in some frames and still much computation. In the paper, we propose an algorithm that reduces unnecessary computations only, while keeping prediction quality almost similar to that of the full search. The proposed algorithm uses distribution of probability of motion vectors, divides search range into several groups according to its importance, and applies adaptive block matching criteria for each group of search range. The proposed algorithm takes only 3~5% in computational amount and has decreased prediction quality about 0~0.01dB compared with the fast full search algorithm.

협력적 필터링 알고리즘의 예측 성과와 사용자 선호도 평가치 특성과의 관계에 관한 연구

  • Lee, Hui-Chun;Lee, Seok-Jun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.87-92
    • /
    • 2012
  • 본 연구는 전자상거래에서 협력적 필터링 알고리즘을 통한 사용자의 선호도 예측 정확도와 사용자가 평가한 선호도 평가치의 관계를 분석하여 알고리즘의 예측 정확도에 영향을 미치는 평가치의 통계적 특성에 관하여 연구한다. 협력적 필터링 알고리즘의 예측 정확도는 상품에 대해 공통의 관심을 갖는 이웃 사용자들의 선정과 이들의 선호도 경향이 중요한 요인이지만 본 연구에서는 선호도 예측을 위한 자신의 선호도 평가치 특성이 알고리즘에 중요한 요인임을 제시한다. 이러한 평가치의 평균, 표준편차, 왜도, 첨도 등과 같은 통계적 특성이 선호도 예측 정확도와 연관성이 있음을 제시하여 차후 연구에서 선호도 예측 이전에 사용자의 선호도 예측성과에 대한 사전평가의 가능성을 제시하고자 한다.

  • PDF

Evaluation of the predictive performance for monthly precipitation of a deep learning model for drought forecasting (가뭄 예보를 위한 딥러닝 모델의 월 강수량 예측 성능 평가)

  • Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.304-304
    • /
    • 2022
  • 가뭄은 인간 활동과 생태계의 다양한 측면에 영향을 미치는 중요한 자연재해 중 하나이다. 가뭄을 사전에 예측하여 필요한 완화 조치를 취하고 환경적 피해를 줄이는 것이 중요하다. 이에 따라 다양한 인공지능 기술을 이용한 가뭄 예측은 수문학, 수자원 관리, 농업 등의 분야에서 중요성이 커지고 있다. 최근에는 딥러닝 알고리즘을 기반으로 하는 중장기 강수예보를 위한 다양한 방법이 제시되고 있다. 이 논문의 목적은 가뭄 예보를 목적으로 월 강수량 예측을 위한 딥러닝 모델의 성능을 평가하는 것이다. 이를 위해 딥러닝 모델인 LSTM(Long Short-Term Memory)을 적용하였으며, 1981-2020년 기간의 월 강수 자료가 모델을 구축하기 위해 사용되었다. 관측자료를 기반으로 학습된 모델을 이용하여 테스트 기간에 대해 월 강수량을 예측하였다. 예측된 강수량을 통해 표준강수지수(Standardized Precipitation Index, SPI)을 산정하고, 예측 정확도를 분석하였다. 이 연구는 가뭄 예보를 위한 딥러닝 모델의 적용 가능성을 보여준다.

  • PDF

A Study on Deep Learning Model Based on Global-Local Structure for Crowd Flow Prediction (유동인구 예측을 위한 Global - Local 구조 기반의 시계열 Deep Learning 모델에 관한 연구)

  • Go, Dennis Heounmo;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.458-461
    • /
    • 2021
  • 유동인구 예측은 상권의 특성에 따른 점포의 입지 선정 및 고객 맞춤형 마케팅 등 민간 분야에서부터 교통망 등 사회 간접 자본 설계를 위한 공공 분야에 이르기까지 다양한 목적으로 연구되어 왔으며, 최근에는 Covid-19 의 확산에 따라 그 중요도가 더욱 높아지고 있다. 보다 정교한 예측을 위해서는 전체적인 유동 인구 뿐만 아니라 특성 별로 세분화된 하위 그룹에 대해서도 정확한 예측이 요구되나, 기존의 예측 모델들은 이러한 데이터의 계층 구조를 고려하지 않았다. 본 연구에서는 세분화된 하위 그룹 별 유동인구의 예측 정확도를 높이기 위해 전체 유동인구의 패턴을 동시에 활용하는 Global-Local 구조 기반의 Deep Learning 유동인구 분석 모델을 제안한다. 실험 결과 단일 시계열 데이터만을 사용하는 경우 대비 5.4%~52.6%의 예측 오류 감소 효과가 있음을 확인하였다.

Prediction and Field Measurement on Behaviour of Soft Clay during Deep Excavation (연약점성토지반에서의 깊은굴착에 따른 지반거동의 예측과 현장계측)

  • 정성교;조기영;정은용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.111-124
    • /
    • 1999
  • When deep excavation adjacent to an existing structure is performed, it is very important to minimize damage on the structure through the prediction of ground movement. In this paper, finite element analysis was performed to predict the ground movement, based on the data from site investigation and laboratory tests, when deep excavation close to a buried water tank was carried out in soft clay ground. The movement and stabilities of the soil-cement wall(SCW) and the adjacent structure were checked using the results of the analysis and the field measurement. The comparison between the measured and the predicted ground movements showed the significance of the excavation procedure and lowering of water level in the analytical model. In the future, it is needed to improve the prediction method for better estimation of the ground movement.

  • PDF

Forecasting of Container Cargo Volumes of China using System Dynamics (System dynamics를 이용한 중국 컨테이너 물동량 예측에 관한 연구)

  • Kim, Hyung-Ho;Jeon, Jun-woo;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.157-163
    • /
    • 2017
  • Forecasting container cargo volumes is very important factor for port related organizations in inversting in the recent port management. Especially forcasting of domestic and foreign container volume is necessary because adjacent nations are competing each other to handle more container cargoes. Exact forecasting is essential elements for national port policy, however there is still some difficulty in developing the predictive model. In this respect, the purpose of this study is to develop and suggest the forecasting model of container cargo volumes of China using System Dynamics (SD). The monthly data collected from Clarkson's Shipping Intelligence Network from year 2004 to 2015 during 12 years are used in the model. The accuracy of the model was tested by comparisons between actual container cargo volumes and forecasted corgo volumes suggested by the research model. The MAPE values are calcualted as 6.21% for imported cargo volumes and 7.68% for exported cargo volumes respectively. Less than 10% of MAPE value means that the suggested model is very accurate.

Seasonal Prediction Model for Urban Water Demand (급수수요량의 계절별 예측모델에 관한 연구)

  • Gu, Ja-Yong
    • 수도
    • /
    • v.23 no.6 s.81
    • /
    • pp.36-46
    • /
    • 1996
  • 급수 수요량의 단기예측은 상수도 시스템의 유지관리 계획 수립의 중요한 구성 요소이며, 대상지역의 특성을 민감하게 반영하고 있으므로, 급수수요의 지역 특성과 관련된 수요 구조의 파악이 무엇보다 중요한 과제라 할 수 있다. 따라서 본 논문에서는 상수도 시스템의 합리적 배수 제어 획을 실시하기 위한 기초적 정보인 급수량 변동 구조에 대해 통계적인 분석을 실시하였다. 특히 일단위의 급수량에 초점을 두어 급수량의 시계열 특성과 급수량 영향 요인 분석을 통하여 대상 지역의 정상 시계열장과 급수량에 영향을 미치는 요인을 분석하였다. 또한 급수량의 계절별 단기 수요 예측 모델을 제안하기 위하여 통계적 예측 수법으로 평가 받고 있는 MARIMA (Multiple Auto Regressive Integrated Moving Average) 모델을 급수량 단기 수요 예측에 적용하여 계절별 급수 수요량을 예측하였다.

  • PDF

예측치 이익을 이용한 EVA 기업가치모형에 관한 연구

  • Jo, Jang-Yeon;Gang, Hyo-Seok
    • The Korean Journal of Financial Studies
    • /
    • v.6 no.1
    • /
    • pp.117-140
    • /
    • 2000
  • 본 연구는 그간 실무계와 학계에서 주목을 받고 있는 EVA 모형과 기업가치모형간의 상호 관계를 보여주고 실증적으로 예측치 경상이익과 순이익을 이용하여 EVA와 기업가치를 측정하고 이러한 예측가치와 실제가치와의 관계를 살펴보았다. 1990년부터 5년간 모두 535 기업을 대상으로 분석한 결과 강효석과 남명수 (1998)의 연구와 같이 모든 연도에 부의 EVA를 보여 주고 있으며 1년 예측치보다 2년 예측치를 기초로 산정한 기업가치가 실제가치에 근접하였다. 각 연도 별로 보면 예상경상이익을 사용한 경우 70%부터 94%까지의 높은 설명력을 보여주며, 5년 누계는 83%의 설명력을 나타냈다. 경상이익 대신 순이익을 사용한 경우도 유사한 결과를 보여주고 있다. 끝으로 가치평가오차를 원천별로 그리고 유형별로 분석하였는데 기업가치 예측오차 중 경제전반이 설명하는 부분은 10%정도, 산업은 $13{\sim}15%$, 그리고 개별기업이 $75{\sim}77%$를 차지하고 있어 개별기업의 중요도가 미국에 비하여 낮은 수준을 보여주고 있다. 유형별로도 편의비율이나 회귀비율이 $5{\sim}8%$수준인데 비하여 무작위 비율이 86%수준을 보여 주고있다.

  • PDF

Feature Selection Deep Learning Model considering Time Series Prediction (시계열 예측을 고려한 속성 선택 딥러닝 모델)

  • Park, Kwang Ho;Munkhdalai, Lkhagvadorj;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.509-512
    • /
    • 2021
  • 최근 다양한 시계열 데이터의 분석이 딥러닝 방법을 통하여 수행되고 있다. 주로 RNN과 LSTM을 이용하여 많은 시계열 예측이 이루어지고 있다. 하지만 이러한 예측모델을 생성하는데 가장 중요한 것은 어떠한 변수를 얼마나 사용하는지가 중요하다. 이에 대하여, 본 연구에서는 3개의 신경망을 적용하여, 속성을 선택하는 Selection MLP, 속성에 가중치를 부여하는 Extraction MLP 그리고 예측을 진행하는 Prediction MLP로 이루어진 MLP-SEL 구조를 제안한다. 비교를 위하여 다른 순환 신경망에 대하여 시계열 데이터에 대한 예측을 진행하였으며, 그 결과 우리가 제안한 MLP-SEL 모델의 시계열 예측이 좋은 성능을 보였다.

Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP) (다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측)

  • Song, Hye-Won;Park, Gi-Cheol;Park, JaeHwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.