• 제목/요약/키워드: 예측 알고리즘

검색결과 3,456건 처리시간 0.038초

고객의 선호도 평가패턴을 이용한 선호도 예측 알고리즘의 성능개선 방안

  • 이석준;김선옥;이희춘
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.149-152
    • /
    • 2008
  • 본 연구는 협업 추천 시스템에 적용되는 상품에 대한 고객의 선호도 예측 알고리즘 중 메모리기반 협업필터링 알고리즘의 선호도 예측 특성에 대하여 연구하였다. 메모리기반의 협업필터링 알고리즘은 선호도 예측 대상 고객과 유사한 성향을 가질 것으로 예상되는 고객들의 선호도 평가를 기반으로 특정 상품에 대한 선호도 예측이 이루어진다. 일반적으로 시스템을 이용하는 고객들과 선호성향이 다른 고객들은 선호도 예측 성과가 낮은 것으로 알려져 있으며 이들이 추천시스템의 선호도 예측 정확도를 떨어뜨리는 원인으로 알려져 있다. 본 연구에서는 고객이 상품들에 평가한 선호도 평가의 패턴이 선호도 예측 정확도와 관련성이 높음을 보여 선호도 예측 알고리즘의 개선에 기초 자료를 제공하고자 한다. 고객의 선호도 평가 패턴은 과거 고객이 평가한 자료로부터 얻을 수 있는 사전정보로써 선호도 예측 알고리즘을 적용하기 이전에 이용할 수 있는 정보이다. 본 연구에서는 사전정보를 이용하여 고객의 선호도 예측 오차의 특성을 연구함으로써 이들의 선호도 예측 정확도를 개선시킬 수 있는 알고리즘의 보정방법에 대하여 연구한다. 알고리즘의 보정방법을 선호도 예측 이전에 고객의 선호도 평가 특성으로 판단하여 적용함으로써 사전정보를 이용한 선호도 예측 정확도를 향상시키기 위한 접근법은 기존의 이웃 구성의 접근법과 다른 방법을 취함으로써 알고리즘 개선의 새로운 방향을 제시할 것으로 기대된다.

  • PDF

Levenberg-Marquardt 알고리즘의 지반공학 적용성 평가 (Evaluation for Applications of the Levenberg-Marquardt Algorithm in Geotechnical Engineering)

  • 김영수;김대만
    • 한국지반환경공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.49-57
    • /
    • 2009
  • 본 연구에서는 Levenberg-Marquardt(LM) 알고리즘 인공신경망을 통하여 지반공학 문제 중의 하나인 압축지수를 예측하였고, 예측된 결과는 현재 지반공학에 널리 사용되고 있는 Back Propagation(BP) 알고리즘 인공신경망의 예측 결과와 비교하여 LM 알고리즘의 지반공학 적용성을 평가하였다. 또한 두 알고리즘에 의한 예측치는 기존에 제안된 압축지수의 경험식들에 의하여 산정된 결과들과 비교를 통하여 예측결과의 정확성을 확인하였다. 경험식에 의한 압축지수의 산정치는 전반적으로 BP 알고리즘과 LM 알고리즘 인공신경망에 의한 예측치에 비하여 더 큰 오차를 나타냈다. LM 알고리즘에 의한 압축지수의 예측치는 BP 알고리즘의 예측치와 비교할 때 정확도는 비슷하나 수렴속도에서 더 좋은 결과를 보여 LM 알고리즘의 지반공학 적용성은 우수한 것으로 나타났다.

  • PDF

ea-­RED 라우터 버퍼 관리 알고리즘 성능 향상에 적합한 예측 알고리즘 (Appropriate Forecast Algorithm for ea-­RED Router Buffer Management Algorithm Performance Improvement)

  • 임혜영;이종현;황준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (3)
    • /
    • pp.115-117
    • /
    • 2003
  • ea­RED(Efficient Adaptive RED)[1][2] 라우터 버퍼 관리 알고리즘 성능 향상을 위해서 ea­RED 라우터 버퍼 사이즈 변화를 예측할 수 있는 예측 알고리즘 모듈의 추가 필요성을 느낀다. 그래서 본 논문에서는 ea­RED 라우터 버퍼 관리 알고리즘의 원형인 RED 라우터 버퍼 관리 알고리즘에 AR(AutoRegression Analysis), IIR(Infinite Impulse Response) MACD(Moving Average Convergence & Divergence), LR_Lines(Linear Regression Lines)등의 예측 알고리즘 모듈을 적용하여 변화를 살펴보고. 결과를 비교. 분석하여 ea­RED 라우터 버퍼 관리 알고리즘 성능 향상에 가장 적합한 예측 알고리즘으로 LR_Lines를 선정했다. ea­RED 라우터 버퍼 관리 알고리즘에 적합한 예측 알고리즘 선정을 위해서 RED 라우터 버퍼 관리 알고리즘을 대신 이용한 이유는 ea­RED 라우터 버퍼 관리 알고리즘의 경우 네트워크 상황에 따라, 버퍼 관련 파라미터 값을 수시로 바꾸기 때문에 예측 알고리즘의 정확성을 판단하는데 어려움이 있지만, RED 라우터의 경우는 버퍼 관련 파라미터 값을 변화시키지 않기 때문에, 좀 더 일관성 있고 정확한 분석을 수행할 수 있기 때문이다.

  • PDF

Flexible Window 기법을 이용한 위치 예측 알고리즘 설계 (Design of a User Location Prediction Algorithm Using the Flexible Window Scheme)

  • 손병희;김용훈;남의석;김학배
    • 한국통신학회논문지
    • /
    • 제32권6A호
    • /
    • pp.550-557
    • /
    • 2007
  • 인과 관계에 대한 직관적인 개념으로 Bayesian Networks 알고리즘이나 트리 구조 추측 알고리즘 그리고 유전자 알고리즘을 사용하여 다양한 구조의 상황을 예측을 하게 된다. 하지만 이런 예측 알고리즘들을 상황인지 서비스 구현에 적용하기에는 실제 구현의 어려움과 실시간 환경에서 트레이닝 데이터 처리에서 오는 시간 지연 문제 등이 발생하게 된다. 이 때문에 특정 목적의 상황인지 시스템에서 이 알고리즘들이 어느 정도의 예측 정확도와 신뢰도를 가지고 상황 정보에 부합하는지 미지수이다. 따라서 본 논문에서는 기존의 예측 알고리즘과는 다른 접근 방식을 통해, 사용자의 습관이나 행동양식을 데이터베이스로 만들어 이를 고려함으로써 상황인지 시스템의 상황 정보와 부합되는 Flexible Window 기법을 이용한 위치 예측 알고리즘을 제안한다. 제안된 Flexible Window 기법을 이용한 위치 예측 알고리즘은 동일한 실험 조건 아래, Fixed Window 기법을 이용한 위치 예측 알고리즘보다 평균적으로 5.10% 더 우수한 성능을 보인다. 이 방식은 기하급수적으로 늘어나는 상황 정보를 감안했을 때 알고리즘 수행 시 처리 시간의 감소와 예측 정확도를 향상 시킬 수 있다.

고속 영상 부호화를 위한 양자화 변환 및 움직임 예측 알고리즘 (Motion estimation algorithm using quantization for fast video encoding)

  • 박상욱;심재영;이상욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.186-187
    • /
    • 2012
  • 본 논문에서는 기존의 표준 동영상 부호기의 산술적 연산 복잡도 및 대역폭을 낮추기 위하여 양자화된 두 영상에서 움직임을 예측하는 고속 영상 부호화 알고리즘을 제안한다. 기존에 제안된 이진 변환 기반 움직임 예측 알고리즘은 표적 영상과 참조 영상의 각 매크로 블록 단위로 가우시안 양자화를 적용한 뒤, 움직임 예측을 수행하기 때문에 블록 단위의 아티팩트로 인한 탐색 성능 저하를 피할 수 없다. 따라서, 우리는 참조 영상의 탐색 영역에 대해 하나의 양자화기를 적용함으로써 보다 정확한 움직임을 예측한다. 또한, 기존 알고리즘이 하나의 가우시안 양자화기를 적용하는 것과 달리, 제안 알고리즘은 데이터 특성 파악에 따른 다양한 확률 모델을 가정한 뒤 각 모델에 적합한 최적의 양자화기를 적용함으로써 블록 매칭 오류를 낮춘다. 실험 결과를 통해 제안 알고리즘이 기존의 이진 변환 기반 움직임 예측 알고리즘에 비해 보다 정확한 움직임 벡터를 예측함을 보인다.

  • PDF

협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구 (A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation)

  • 이석준;이희춘
    • 경영정보학연구
    • /
    • 제9권1호
    • /
    • pp.85-103
    • /
    • 2007
  • 본 연구의 목적은 좀 더 정확한 고객 선호도 예측을 위한 협업 필터링 알고리즘의 예측 성능을 평가하기 위한 것이다. 고객 선호도 예측의 정확도를 비교하기 위하여 이웃 기반의 협업 필터링 알고리즘과 대응평균 알고리즘에 의한 고객 선호도 예측의 MAE를 비교하였다. 예측 알고리즘의 정확성을 분석하기 위하여 MovieLens 1 Million dataset을 이용하여 실험을 하였다. 각 예측 알고리즘에 사용된 유사도 가중치는 일반적으로 이용되는 피어슨 상관계수와 벡터 유사도를 이용하였으며 분석결과 대응평균 알고리즘의 예측 정확도가 이웃 기반의 협업 필터링 알고리즘의 예측 정확도 보다 우수한 것으로 나타났다. 두 알고리즘에 사용된 유사도 가중치인 피어슨 상관계수와 벡터 유사도는 두 고객이 특정 상품에 대하여 공통으로 평가한 선호도 평가치를 이용하여 계산된다. 이때 공통으로 평가한 선호도 평가치의 개수가 적으면 계산된 유사도 가중치가 과대 평가된다. 과대 평가된 유사도 가중치를 보정하여 고객 선호도 예측의 정확도를 높이기 위하여 기존의 연구에서 고려한 공통 평가 영화의 개수 보다 확대된 범위를 적용하였으며 각 예측 방법에 따라 서로 다른 개선 경향을 파악할 수 있었다.

Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구 (Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm)

  • 여운기;서영민;지홍기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF

협력적 필터링 알고리즘의 예측 성과와 사용자 선호도 평가치 특성과의 관계에 관한 연구

  • 이희춘;이석준
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.87-92
    • /
    • 2012
  • 본 연구는 전자상거래에서 협력적 필터링 알고리즘을 통한 사용자의 선호도 예측 정확도와 사용자가 평가한 선호도 평가치의 관계를 분석하여 알고리즘의 예측 정확도에 영향을 미치는 평가치의 통계적 특성에 관하여 연구한다. 협력적 필터링 알고리즘의 예측 정확도는 상품에 대해 공통의 관심을 갖는 이웃 사용자들의 선정과 이들의 선호도 경향이 중요한 요인이지만 본 연구에서는 선호도 예측을 위한 자신의 선호도 평가치 특성이 알고리즘에 중요한 요인임을 제시한다. 이러한 평가치의 평균, 표준편차, 왜도, 첨도 등과 같은 통계적 특성이 선호도 예측 정확도와 연관성이 있음을 제시하여 차후 연구에서 선호도 예측 이전에 사용자의 선호도 예측성과에 대한 사전평가의 가능성을 제시하고자 한다.

  • PDF

메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용 (Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model)

  • 류용민;이의훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

인공신경망과 유전자알고리즘을 이용한 수위예측에 관한 연구 (Study on Water Stage Prediction by Artificial Neural Network and Genetic Algorithm)

  • 여운기;지홍기;이순탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1159-1163
    • /
    • 2010
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 수위자료로부터 단시간 수위예측에 관해 연구하였다. 신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 하천수위를 과거의 자료로 부터 학습된 신경망의 수학적 알고리즘을 통해 유출량의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 따라서 본 연구에서는 인공신경망의 가중치를 유전자 알고리즘에 의해 최적화시킨후 오류역전파알고리즘에 의해 신경망의 학습을 진행하는 모형으로 감천유역의 선산수위표지점의 수위를 1시간~6시간까지 예측하였다.

  • PDF