• Title/Summary/Keyword: 예측 모형

Search Result 6,153, Processing Time 0.038 seconds

Web-Based Forecasting System for Flood Runoff with Neural Network (신경회로망을 이용한 Web기반 홍수유출 예측시스템)

  • Hang, Dong-Guk;Jun, Kye-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.437-442
    • /
    • 2005
  • The forecasting of flood runoff in the river is essential for flood control. The purpose of this study is to test a development of system for flood runoff forecasting using neural network model. For the flood events the tested rainfall and runoff data were the input to the input layer and the flood runoff data were used in the output layer To choose the forecasting model which would make up of runoff forecasting system properly, real-time runoff in the river when flood periods were forecasted by using the neural network model and the state-space model. A comparison of the results obtained by the two forecasting models indicated the superiority and reliability of the neural network model over the state-space model. The neural network model was modified to work in the Web and developed to be the basic model of the forecasting system for the flood runoff.

A Development of System for Flood Runoff Forecasting using Neural Network Model (신경망 모형을 이용한 홍수유출 예측시스템의 재발)

  • Ahn, Sang-Jin;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.771-780
    • /
    • 2004
  • The purpose of this study is to test a development of system for flood runoff forecasting using neural network model. As the forecasting models for flood runoff the neural network model was tested with the observed flood data at Gongju and Buyeo stations. The neural network model consists of input layer, hidden layer, and output layer. For the flood events tested rainfall and runoff data were the input to the input layer and the flood runoff data were used in the output layer. To make a choice the forecasting model which would make up of runoff forecasting system properly, real-time runoff of river when flood periods were forecasted by using neural network model and state-space model. A comparison of the results obtained by the two forecasting models indicated the superiority and reliability of the neural network model over the state-space model. The neural network model was modified to work in the Web and developed to be the basic model of the forecasting system for the flood runoff. The neural network model developed to be used in the Web was loaded into the server and was applied to the main stream of Geum river. For the main stage gauging stations mentioned above the applicability of the selected forecasting model, the Neural Network Model, was verified in the Web.

Forecasting methodology of future demand market (미래 수요시장의 예측 방법론)

  • Oh, Sang-young
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.205-211
    • /
    • 2020
  • The method of predicting the future may be predicted by technical characteristics or technical performance. Therefore, technology prediction is used in the field of strategic research that can produce economic and social benefits. In this study, we predicted the future market through the study of how to predict the future with these technical characteristics. The future prediction method was studied through the prediction of the time when the market occupied according to the demand of special product. For forecasting market demand, we proposed the future forecasting model through comparison of representative quantitative analysis methods such as CAGR model, BASS model, Logistic model and Gompertz Growth Curve. This study combines Rogers' theory of innovation diffusion to predict when products will spread to the market. As a result of the research, we developed a methodology to predict when a particular product will mature in the future market through the spread of various factors for the special product to occupy the market. However, there are limitations in reducing errors in expert judgment to predict the market.

인공신경망모형을 이용한 주가의 예측가능성에 관한 연구

  • Jeong, Yong-Gwan;Yun, Yeong-Seop
    • The Korean Journal of Financial Management
    • /
    • v.15 no.2
    • /
    • pp.369-399
    • /
    • 1998
  • Most of the studies on stock price predictability using the linear model conclude that there are little possibility to predict the future price movement. But some anomalous patterns may be generated by remaining market inefficiency or regulation, market system that is facilitated to prevent the market failure. And these anomalous pattern, if exist, make them difficult to predict the stock price movement with linear model. In this study, I try to find the anomalous pattern using the ANN model. And by comparing the predictability of ANN model with the predictability of correspondent linear model, I want to show the importance of recognitions of anomalous pattern in stock price prediction. I find that ANN model could have the superior performance measured with the accuracy of prediction and investment return to correspondent linear model. This result means that there may exist the anomalous pattern that can't be recognized with linear model, and it is necessary to consider the anomalous pattern to make superior prediction performance.

  • PDF

Evaluation and Comparison of seasonal multivariate time series model construction with rainfall and site characteristics (강우 및 지점특성치를 이용한 계절형 다변량 시계열 모형 구축 평가 및 비교)

  • Kim, Taereem;Choi, Wonyoung;Shin, Hongjoon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • 수자원의 지속적인 관리 및 효율적인 활용을 위하여 수문량의 예측과 분석은 필수적인 과정이라 할 수 있으며 이에 따라 다양한 수문 모형이 구축되고 강우, 유량 등 대표적인 수문량의 예측이 수행되어져 왔다. 그 중에서도 수문 시계열 모형은 시간의 흐름에 따라 일정하게 기록되어온 수문 자료를 확률적인 과정을 통하여 모형을 구축하고 이를 바탕으로 미래 수문량을 예측하는 데활용되는 모형으로, 과거에 기록된 수문 패턴이 미래에도 지속된다는 가정 하에 구축된다. 일반적으로 시계열 모형은 하나의 자료계열로 모형을 구축하는 단변량 모형과 원 자료계열 외에 다른 자료계열을 고려하여 모형을 구축하는 다변량 모형이 있으며, 다변량 모형은 원 자료계열에 영향을 미치는 외부변수를 고려함으로써 두 자료계열간의 상관성을 모형에 반영할 수 있는 장점을 가지고 있다. 또한 자료계열의 계절성을 고려하여 시계열 모형을 구축할 경우, 수문 시계열이 가지고 있는 계절적 영향을 잘 반영할 수 있다. 따라서 본 연구에서는 계절성을 고려한 다변량 시계열 모형인 SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous) 모형을 이용하여 대표적인 수공구조물인 댐의 유입량 예측을 수행하였다. 일반적으로 댐 유입량 예측에는 댐의 유입량과 상관성이 높은 강우가 외부변수로 사용되어져 왔으나, 이 외에도 영향을 미칠 수 있는 지점특성치를 고려하여 모형을 구축한 후 비교하였다.

  • PDF

Forecasting monthly precipitation of Gyeongan-cheon watershed using teleconnection with global climate indices (글로벌 기후지수와의 원격상관을 이용한 경안천 유역의 월 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.314-314
    • /
    • 2019
  • 가뭄대응 및 이수분야 활용을 위한 장기 기상예측정보 확보를 위해, 경안천 유역을 대상으로 전구기후지수의 원격상관 패턴을 이용하여 통계적 기반의 다중회귀모형을 구성하고 월 강수량의 예측가능성을 평가하였다. 예측인자로서 미국 NOAA에서 제공하는 기후지수 중 총 37개의 지수에 대해 1948~2018년의 월 자료를 이용하였으며, 예측대상인 경안천 월 강수량은 1966~2018년의 유역평균 강수량 자료를 활용하였다. 각 기후지수별 1~24개월 선행자료와 예측대상년도 월 강수량과의 상관분석을 통해 상관성이 높은 기후자료를 선별하여 다중회귀모형의 독립변수로 적용하였다. 예측대상년도를 기준으로 과거 40년의 자료(월 강수량 및 월 기후지수)를 보정자료와 검정자료로 구분(20년씩 무작위로 추출)하고, 보정기간에 대해 도출된 회귀모형 중 검정기간을 대상으로 예측성이 좋은 100개의 회귀모형을 선별하여 예측대상기간에 대한 예측모형으로 활용하였다. 2006~2018년에 대해 전망기간별(1개월, 3개월, 6개월, 12개월)로 각 월별 100개 회귀모형으로 부터의 예측값(예측치의 범위)이 실제 관측치를 포함하는 경우를 월별로 분석한 결과 10월이 가장 높고(83%), 11월(81%), 1월(79%), 8월(77%), 6월(75%), 12월(71%)의 순으로 높게 나타났으며, 상대적으로 7월(29%)과 3월(44%)의 예측성이 낮은 것으로 나타났다. 통계적 모형의 특성상 전망기간에 따른 예측의 정확도는 비례하지 않았다. 예측치의 편차는 크지 않지만 예측성이 낮게 나타나는 기간(3월, 2월)과 예측성은 높지만 예측범위가 크게 나타나는 기간(8월, 6월)에 대해서는 예측모형의 재검토 및 다양한 규모의 유역에 대한 적용을 통해 예측인자 추가 및 보완 등을 수행할 예정이다.

  • PDF

Application of Artificial Neural network in container traffic forecasting (컨테이너물동량 예측에 있어 인공신경망모형의 활용에 관한 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.108-109
    • /
    • 2010
  • 본 연구에서는 비선형예측기법으로서 그 우수성을 인정받고 있는 인공신경망모형을 사용하여 컨테이너 물동량 예측을 수행하였다. 그러나 인공신경망모형을 사용해 시계열의 예측결과를 ARIMA모형과 같이 널리 알려진 다른 전통적인 수요예측기법들과 비교 평가한 과거 연구들을 보게 되면 각기 주장하는 바와 그 결론이 상반됨을 알 수 있다. 그래서 인공신경망의 예측성과를 높이기 위한 기존의 선행연구들의 다양한 시도들을 바탕으로 국내 항만의 컨테이너물동량을 예측하고, 그를 통해 여러 모형간의 비교 검증작업을 수행하였다.

  • PDF

A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic (항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.

Long Term Runoff Simulation Using Hydrologic Time Series Forecasting (수문시계열 예측을 이용한 장기유출 모의)

  • Yoon, Sun-Kwon;Oh, Tae-Suk;Moon, Young-Il;Moon, Jang-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1012-1016
    • /
    • 2009
  • 수자원 시스템 거동예측은 수문학적 지속성여부에 대한 판단이 선행 되어야 하며 가용한 시계열자료에 대한 추계학적 분석을 통하여 실시하여야 한다. 본 연구에서는 계절형 ARIMA모형을 통한 안동댐 유역의 강우량, 증발산량 및 유출량 시계열자료를 예측함에 있어 전형적인 Box-jenkins의 방법을 따랐고 모형의 식별, 추정, 검진의 3단계를 거쳐 모형화 하였다. 최적 수문시계열 예측 모형을 통하여 안동댐 유역의 강우량, 증발산량 및 유출량 시계열자료로 월별 수문시스템 거동을 예측하였으며, 예측된 결과를 토대로 TANK모형과 ARIMA+TANK결합모형에 의한 장기유출모의를 실시하였다. 분석결과 관측자료의 특성을 비교적 잘 반영 하였으며, 댐 유입량 예측을 위한 추계학적 결합모형의 적용가능성을 검토하였다. 이는 유출량자료의 보유년한이 짧은 대상유역에 월강우량과 증발산량자료 등의 수문시계열 인자 예측을 통한 유출을 모의함으로서 수자원의 중 장기 전략수립에 도움을 줄 것으로 사료된다.

  • PDF

A Prediction of Demand for Korean Baseball League using Artificial Neural Network (인공 신경망 모형을 이용한 한국프로야구 관중 수요 예측)

  • Park, Jinuk;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.920-923
    • /
    • 2017
  • 본 연구는 기존의 수요 예측 등의 시계열 분석에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial Neural Network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 인공신경망의 가장 기본적인 종류인 전방향 신경망(Feedforward Neural Network)의 초모수(Hyperparameter) 선정에 그리드 탐색(Grid Search)을 적용하여 최적의 모형을 찾고자 하였다. 훈련 자료로는 2015년 3월부터 8월까지의 일별 KBO 관중 수 자료를 대상으로 하였고, 예측력 검증을 위해 2015년 9월 관중 수를 예측하여 실제 관측값과 비교하였다. 그 결과, 그리드 탐색법에서 최적 모형이라고 판단한 모형의 예측력은, 평균 절대 백분율 오차(MAPE) 기준으로 평균 27.14% 였다. 또한, 앙상블 기법에서 착안하여 오차율이 낮은 모형 5개의 예측값 평균의 MAPE는 평균 28.58% 였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 14%, 13.6% 높은 예측력을 보이고 있다.