• Title/Summary/Keyword: 예측지도

Search Result 678, Processing Time 0.035 seconds

Development of Hazard Prediction Map S/W for Mountain River Road (산지하천도로 재해지도 작성을 위한 SW 개발)

  • Jang, Dae Won;Yang, Dong Min;Kim, Ki Hong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.

  • PDF

Diabetes Predictive Analytics using FCM Clustering based Supervised Learning Algorithm (FCM 클러스터링 기반 지도 학습 알고리즘을 이용한 당뇨병 예측 분석)

  • Park, Tae-eun;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.580-582
    • /
    • 2022
  • 본 논문에서는 데이터를 정량화하여 특징을 분류하기 위한 방법으로 퍼지 클러스터링 기반 지도 학습 방법을 제안한다. 제안된 방법은 FCM 클러스터링을 기법을 적용하여 군집화를 수행한다. 그리고 군집화 된 데이터들 중에서는 정확히 분류되지 않은 데이터가 존재하므로 분류되지 않은 데이터에 대해 지도 학습 방법을 적용한다. 본 논문에서는 당뇨병의 유무를 타겟 데이터로 설정하고 나머지 8개의 속성의 데이터를 FCM 기반 지도 학습 방법을 적용하여 당뇨병의 유무를 예측한다. 당뇨병 예측에 대한 성능을 30회의 K-겹 교차검증 (K-Fold Corss Validation)을 이용하여 평가하였으며, 다층 퍼셉트론의 경우에는 훈련 데이터가 77.88%, 테스트 데이터가 62.78%로 나타났고 제안된 방법의 경우에는 훈련 데이터가 79.96%, 테스트 데이터 74.16%로 나타났다.

  • PDF

Verification of Ground Subsidence Risk Map Based on Underground Cavity Data Using DNN Technique (DNN 기법을 활용한 지하공동 데이터기반의 지반침하 위험 지도 작성)

  • Han Eung Kim;Chang Hun Kim;Tae Geon Kim;Jeong Jun Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.334-343
    • /
    • 2023
  • Purpose: In this study, the cavity data found through ground cavity exploration was combined with underground facilities to derive a correlation, and the ground subsidence prediction map was verified based on the AI algorithm. Method: The study was conducted in three stages. The stage of data investigation and big data collection related to risk assessment. Data pre-processing steps for AI analysis. And it is the step of verifying the ground subsidence risk prediction map using the AI algorithm. Result: By analyzing the ground subsidence risk prediction map prepared, it was possible to confirm the distribution of risk grades in three stages of emergency, priority, and general for Busanjin-gu and Saha-gu. In addition, by arranging the predicted ground subsidence risk ratings for each section of the road route, it was confirmed that 3 out of 61 sections in Busanjin-gu and 7 out of 68 sections in Sahagu included roads with emergency ratings. Conclusion: Based on the verified ground subsidence risk prediction map, it is possible to provide citizens with a safe road environment by setting the exploration section according to the risk level and conducting investigation.

The Urban Fire Prediction Mapping Technique based on GIS Spatial Statistics (GIS 공간통계를 이용한 도심화재예측지도 제작기법 탐색)

  • Kim, Jin-Taek;Um, Jung-Sup
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.14-23
    • /
    • 2007
  • In this thesis, we analysed urban fires and developed the predictive mapping technique by using GIS and spatial statistics. It presented the correlation between the fire data of last 5 years ($2001{\sim}2005$) and the factor of civilization environment in Daegu city. We produced a model of fire hazard predictive map by analyzing uncertainty of fire with the quadrat analysis and the poisson distribution.

Urban Flood Prediction using LSTM and SOM (LSTM과 SOM을 적용한 도시지역 침수예측)

  • Lee, Yeonsu;Yu, Jae-Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.325-325
    • /
    • 2021
  • 딥러닝을 이용한 침수해석은 강우자료와 그에 대한 1차원 EPA-SWMM 결과인 총월류량을 인공신경망에 학습시키고, 학습시킨 인공신경망을 테스트하기 위해 또다른 강우자료를 인공신경망으로 예측해서, 이것이 해석결과를 얼마나 잘 나타내는지 확인하고, 인공신경망이 모의한 총월류량을 잘 나타낸다면 인공신경망을 잘 학습시킨 것으로 판단하여 새로운 강우가 발생했을 때 새로운 강우자료에 대해 매번 새로 1차원, 2차원해석을 하는 것을 대신하여 인공신경망만으로 총월류량을 예측할 수 있게 되는 것이다. 강우자료를 입력자료로 사용하게 되는데, 강우량만으로는 그 강우의 특성을 전부 나타낸다고 할 수 없기 때문에 지속기간과 총강우량, 왜도(skewness), 표준편차를 추가적인 입력자료로 사용한다. 1차원, 2차원 해석결과인 총월류량은 입력자료에 대한 타깃자료가 되어, 인공신경망을 테스트하거나 실제로 이용할 때 비슷한 지속기간과 총강우량, 왜도, 표준편차를 가진 강우가 발생했을 때 타깃자료를 이용해 총월류량을 예측하는 것이다. 인공신경망이 얼마나 잘 학습되었는지 확인하기 위해서 침수지도를 작성해볼 필요가 있다. 1차원, 2차원 모의해석으로 나온 총월류량과, 인공신경망을 이용해 예측한 총월류량을 이용해 각각 침수지도를 작성하여 시각적 자료로 변환하여 비교하고, 침수지도가 일치한다면 인공신경망이 잘 학습되었다고 판단할 수 있고, 새로운 강우가 발생하면 학습시킨 인공신경망을 통해 1차원, 2차원 모의해석을 하지 않고도 총월류량을 예측할 수 있다.

  • PDF

The Landslide Probability Analysis using Logistic Regression Analysis and Artificial Neural Network Methods in Jeju (로지스틱회귀분석기법과 인공신경망기법을 이용한 제주지역 산사태가능성분석)

  • Quan, He Chun;Lee, Byung-Gul;Lee, Chang-Sun;Ko, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.33-40
    • /
    • 2011
  • This paper presents the prediction and evaluation of landslide using LRA(logistic regression analysis) and ANN (Artificial Neural Network) methods. In order to assess the landslide, we selected Sarabong, Byeoldobong area and Mt. Song-ak in Jeju Island. Five factors which affect the landslide were selected as: slope angle, elevation, porosity, dry density, permeability. So as to predict and evaluate the landslide, firstly the weight value of each factor was analyzed by LRA(logistic regression analysis) and ANN(Artificial Neural Network) methods. Then we got two prediction maps using AcrView software through GIS(Geographic Information System) method. The comparative analysis reveals that the slope angle and porosity play important roles in landslide. Prediction map generated by LRA method is more accurate than ANN method in Jeju. From the prediction map, we found that the most dangerous area is distributed around the road and path.

Analysis of the railway noise prediction result using Schall03 in noise mapping (소음지도 작성 시의 Schall03에 의한 철도소음 예측결과 분석)

  • Koh, Hyoin;Jang, Jinwon;Jang, Seungho;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.175-189
    • /
    • 2016
  • The guideline for railway noise mapping is notificated in the administration law for noise/vibration which is announced by the ministry of environment, Korea. Here input parameters for the railway sound sources are proposed for each prediction models. In case of the application of the vehicle characteristics it is suggested to choose "0(%)" for the disc brake parameter. However new trains have been in revenue service since the announcement of the guideline, an investigation of the effect of the input parameters of the foreign railway prediction models on the prediction results of korean railway systems are needed. In this paper the sound prediction results are analyzed with a focus on the input parameters such as disc brake percentage, rail roughness, rail joints. Schall03 is used for the railway noise prediction which has been using most frequently in Korea. The results are shown and discussed.

Development for Prediction Model of Disaster Risk through Try and Error Method : Storm Surge (시행 착오법을 활용한 재난 위험도 예측모델 개발 : 폭풍해일)

  • Kim, Dong Hyun;Yoo, HyungJu;Jeong, SeokIl;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2018
  • The storm surge is caused by an typhoons and it is not easy to predict the location, strength, route of the storm. Therefore, research using a scenario for storms occurrence has been conducted. In Korea, hazard maps for various scenarios were produced using the storm surge numerical simulation. Such a method has a disadvantage in that it is difficult to predict when other scenario occurs, and it is difficult to cope with in real time because the simulation time is long. In order to compensate for this, we developed a method to predict the storm surge damage by using research database. The risk grade prediction for the storm surge was performed predominantly in the study area of the East coast. In order to estimate the equation, COMSOL developed by COMSOL AB Corporation was utilized. Using some assumptions and limitations, the form of the basic equation was derived. the constants and coefficients in the equation were estimated by the trial and error method. Compared with the results, the spatial distribution of risk grade was similar except for the upper part of the map. In the case of the upper part of the map, it was shown that the resistance coefficient, k was calculated due to absence of elevation data. The SIND model is a method for real-time disaster prediction model and it is expected that it will be able to respond quickly to disasters caused by abnormal weather.

Using Flood Inundation Map of Yeongsan and Seomjin River Basin for Coping with Disaster (영산·섬진강 권역 홍수위험지도의 재난대응 활용)

  • Kwon, Minsung;Jung, Chung Gil;Lee, Joonho;Gang, Donghoon;Choi, Kyuhyun;Kim, Kyuho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.497-497
    • /
    • 2022
  • 홍수위험지도는 홍수발생시 예방되는 침수범위와 침수깊이를 나타내는 지도로 2009년 영산강수계(237.53 km), 2016년에 섬진강수계(251.06 km) 국가하천의 홍수위험지도가 제작되었고, 2021년 영산·섬진강권역 지방하천(4521.31 km) 홍수위험지도가 제작됨으로써 영산·섬진강권역 홍수위험지도 제작이 모두 완료되었다. 홍수위험지도 제작은 GIS 범람해석, 1차원 및 2차원 수치모형으로 구분할 수 있따. GIS 범람해석은 제내지의 지형 수치표고모델(DEM) 등을 활용하여 지형자료를 구축하고, 측점별 홍수위를 이용한 홍수위 DEM을 작성한 후 각 DEM의 고도차를 계산하여 홍수범람구역을 도시하는 방법이다. 도심지 또는 주거지를 관류하는 하천에 대해서는 제방의 편안 파제를 가정하여 FLUMEN모형을 이용한 2차원 범람분석 또는 HEC-RAS모형을 이용한 1차원 범람분석 방법 적용한다. 위와 같은 분석 방법으로 도출된 침수 결과는 제방 월류 및 제방 유실 등의 극한 상황을 가정한 것으로, 2020년 섬진강 대홍수 홍수피해 침수구역과 홍수위험지도의 침수구역의 겨의 일치하는 것으로 나타났다. 즉 하천홍수로 발생할 수 있는 피해의 규모를 예측할 수 있으며, 이러한 예측정보는 방재계획 수립 및 홍수대응에 활용도가 높을 것이다. 홍수위험지도는 홍수위험지도정보시스템(www.floodmap.go.kr)에서 누구나 확인이 가능하며, 지자체 방재담당자는 회원가입을 통해 홍수위험지도 전산파일 및 보고서 등을 받을 수 있다. 방재담당자는 홍수위험지도의 침수구역을 바탕으로 대피계획을 수립하고, 집중호우로 인한 하천수위 상승 시 홍수위험지도의 침수구역을 중심으로 방재활동을 하여 인명피해를 최소화할 수 있을 것이다.

  • PDF

A Study on the Construction of 3D Noisemap for Busan's Road Traffic Noise (부산시 도로교통소음의 3차원 소음지도제작에 관한 연구)

  • Kim, Hwa-Il;Han, Kyoung-Min
    • Journal of Environmental Policy
    • /
    • v.6 no.1
    • /
    • pp.111-132
    • /
    • 2007
  • The traffic noise of Busan, the second largest city in Korea, is polluting the area. Noise map is a map that shows data on an existing or predicted noise condition in terms of a noise indicator, breaches of a limit value, the number of dwellings exposed to certain values of a noise indicator in a certain area, or on cost-benefit ratios or other economic data on mitigation methods or scenarios with Geographic Information System. With noise map, the effect of traffic noise and the efficiency of city development plan are exactly estimated. So making systematic counteroffer is possible with it. This study is aimed to the construction of basis for noise map construction method for domestic use and the area focus is Busan.

  • PDF