The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.580-582
/
2022
본 논문에서는 데이터를 정량화하여 특징을 분류하기 위한 방법으로 퍼지 클러스터링 기반 지도 학습 방법을 제안한다. 제안된 방법은 FCM 클러스터링을 기법을 적용하여 군집화를 수행한다. 그리고 군집화 된 데이터들 중에서는 정확히 분류되지 않은 데이터가 존재하므로 분류되지 않은 데이터에 대해 지도 학습 방법을 적용한다. 본 논문에서는 당뇨병의 유무를 타겟 데이터로 설정하고 나머지 8개의 속성의 데이터를 FCM 기반 지도 학습 방법을 적용하여 당뇨병의 유무를 예측한다. 당뇨병 예측에 대한 성능을 30회의 K-겹 교차검증 (K-Fold Corss Validation)을 이용하여 평가하였으며, 다층 퍼셉트론의 경우에는 훈련 데이터가 77.88%, 테스트 데이터가 62.78%로 나타났고 제안된 방법의 경우에는 훈련 데이터가 79.96%, 테스트 데이터 74.16%로 나타났다.
Han Eung Kim;Chang Hun Kim;Tae Geon Kim;Jeong Jun Park
Journal of the Society of Disaster Information
/
v.19
no.2
/
pp.334-343
/
2023
Purpose: In this study, the cavity data found through ground cavity exploration was combined with underground facilities to derive a correlation, and the ground subsidence prediction map was verified based on the AI algorithm. Method: The study was conducted in three stages. The stage of data investigation and big data collection related to risk assessment. Data pre-processing steps for AI analysis. And it is the step of verifying the ground subsidence risk prediction map using the AI algorithm. Result: By analyzing the ground subsidence risk prediction map prepared, it was possible to confirm the distribution of risk grades in three stages of emergency, priority, and general for Busanjin-gu and Saha-gu. In addition, by arranging the predicted ground subsidence risk ratings for each section of the road route, it was confirmed that 3 out of 61 sections in Busanjin-gu and 7 out of 68 sections in Sahagu included roads with emergency ratings. Conclusion: Based on the verified ground subsidence risk prediction map, it is possible to provide citizens with a safe road environment by setting the exploration section according to the risk level and conducting investigation.
In this thesis, we analysed urban fires and developed the predictive mapping technique by using GIS and spatial statistics. It presented the correlation between the fire data of last 5 years ($2001{\sim}2005$) and the factor of civilization environment in Daegu city. We produced a model of fire hazard predictive map by analyzing uncertainty of fire with the quadrat analysis and the poisson distribution.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.325-325
/
2021
딥러닝을 이용한 침수해석은 강우자료와 그에 대한 1차원 EPA-SWMM 결과인 총월류량을 인공신경망에 학습시키고, 학습시킨 인공신경망을 테스트하기 위해 또다른 강우자료를 인공신경망으로 예측해서, 이것이 해석결과를 얼마나 잘 나타내는지 확인하고, 인공신경망이 모의한 총월류량을 잘 나타낸다면 인공신경망을 잘 학습시킨 것으로 판단하여 새로운 강우가 발생했을 때 새로운 강우자료에 대해 매번 새로 1차원, 2차원해석을 하는 것을 대신하여 인공신경망만으로 총월류량을 예측할 수 있게 되는 것이다. 강우자료를 입력자료로 사용하게 되는데, 강우량만으로는 그 강우의 특성을 전부 나타낸다고 할 수 없기 때문에 지속기간과 총강우량, 왜도(skewness), 표준편차를 추가적인 입력자료로 사용한다. 1차원, 2차원 해석결과인 총월류량은 입력자료에 대한 타깃자료가 되어, 인공신경망을 테스트하거나 실제로 이용할 때 비슷한 지속기간과 총강우량, 왜도, 표준편차를 가진 강우가 발생했을 때 타깃자료를 이용해 총월류량을 예측하는 것이다. 인공신경망이 얼마나 잘 학습되었는지 확인하기 위해서 침수지도를 작성해볼 필요가 있다. 1차원, 2차원 모의해석으로 나온 총월류량과, 인공신경망을 이용해 예측한 총월류량을 이용해 각각 침수지도를 작성하여 시각적 자료로 변환하여 비교하고, 침수지도가 일치한다면 인공신경망이 잘 학습되었다고 판단할 수 있고, 새로운 강우가 발생하면 학습시킨 인공신경망을 통해 1차원, 2차원 모의해석을 하지 않고도 총월류량을 예측할 수 있다.
Quan, He Chun;Lee, Byung-Gul;Lee, Chang-Sun;Ko, Jung-Woo
Journal of Korean Society for Geospatial Information Science
/
v.19
no.3
/
pp.33-40
/
2011
This paper presents the prediction and evaluation of landslide using LRA(logistic regression analysis) and ANN (Artificial Neural Network) methods. In order to assess the landslide, we selected Sarabong, Byeoldobong area and Mt. Song-ak in Jeju Island. Five factors which affect the landslide were selected as: slope angle, elevation, porosity, dry density, permeability. So as to predict and evaluate the landslide, firstly the weight value of each factor was analyzed by LRA(logistic regression analysis) and ANN(Artificial Neural Network) methods. Then we got two prediction maps using AcrView software through GIS(Geographic Information System) method. The comparative analysis reveals that the slope angle and porosity play important roles in landslide. Prediction map generated by LRA method is more accurate than ANN method in Jeju. From the prediction map, we found that the most dangerous area is distributed around the road and path.
The guideline for railway noise mapping is notificated in the administration law for noise/vibration which is announced by the ministry of environment, Korea. Here input parameters for the railway sound sources are proposed for each prediction models. In case of the application of the vehicle characteristics it is suggested to choose "0(%)" for the disc brake parameter. However new trains have been in revenue service since the announcement of the guideline, an investigation of the effect of the input parameters of the foreign railway prediction models on the prediction results of korean railway systems are needed. In this paper the sound prediction results are analyzed with a focus on the input parameters such as disc brake percentage, rail roughness, rail joints. Schall03 is used for the railway noise prediction which has been using most frequently in Korea. The results are shown and discussed.
Kim, Dong Hyun;Yoo, HyungJu;Jeong, SeokIl;Lee, Seung Oh
Journal of Korean Society of Disaster and Security
/
v.11
no.2
/
pp.37-43
/
2018
The storm surge is caused by an typhoons and it is not easy to predict the location, strength, route of the storm. Therefore, research using a scenario for storms occurrence has been conducted. In Korea, hazard maps for various scenarios were produced using the storm surge numerical simulation. Such a method has a disadvantage in that it is difficult to predict when other scenario occurs, and it is difficult to cope with in real time because the simulation time is long. In order to compensate for this, we developed a method to predict the storm surge damage by using research database. The risk grade prediction for the storm surge was performed predominantly in the study area of the East coast. In order to estimate the equation, COMSOL developed by COMSOL AB Corporation was utilized. Using some assumptions and limitations, the form of the basic equation was derived. the constants and coefficients in the equation were estimated by the trial and error method. Compared with the results, the spatial distribution of risk grade was similar except for the upper part of the map. In the case of the upper part of the map, it was shown that the resistance coefficient, k was calculated due to absence of elevation data. The SIND model is a method for real-time disaster prediction model and it is expected that it will be able to respond quickly to disasters caused by abnormal weather.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.497-497
/
2022
홍수위험지도는 홍수발생시 예방되는 침수범위와 침수깊이를 나타내는 지도로 2009년 영산강수계(237.53 km), 2016년에 섬진강수계(251.06 km) 국가하천의 홍수위험지도가 제작되었고, 2021년 영산·섬진강권역 지방하천(4521.31 km) 홍수위험지도가 제작됨으로써 영산·섬진강권역 홍수위험지도 제작이 모두 완료되었다. 홍수위험지도 제작은 GIS 범람해석, 1차원 및 2차원 수치모형으로 구분할 수 있따. GIS 범람해석은 제내지의 지형 수치표고모델(DEM) 등을 활용하여 지형자료를 구축하고, 측점별 홍수위를 이용한 홍수위 DEM을 작성한 후 각 DEM의 고도차를 계산하여 홍수범람구역을 도시하는 방법이다. 도심지 또는 주거지를 관류하는 하천에 대해서는 제방의 편안 파제를 가정하여 FLUMEN모형을 이용한 2차원 범람분석 또는 HEC-RAS모형을 이용한 1차원 범람분석 방법 적용한다. 위와 같은 분석 방법으로 도출된 침수 결과는 제방 월류 및 제방 유실 등의 극한 상황을 가정한 것으로, 2020년 섬진강 대홍수 홍수피해 침수구역과 홍수위험지도의 침수구역의 겨의 일치하는 것으로 나타났다. 즉 하천홍수로 발생할 수 있는 피해의 규모를 예측할 수 있으며, 이러한 예측정보는 방재계획 수립 및 홍수대응에 활용도가 높을 것이다. 홍수위험지도는 홍수위험지도정보시스템(www.floodmap.go.kr)에서 누구나 확인이 가능하며, 지자체 방재담당자는 회원가입을 통해 홍수위험지도 전산파일 및 보고서 등을 받을 수 있다. 방재담당자는 홍수위험지도의 침수구역을 바탕으로 대피계획을 수립하고, 집중호우로 인한 하천수위 상승 시 홍수위험지도의 침수구역을 중심으로 방재활동을 하여 인명피해를 최소화할 수 있을 것이다.
The traffic noise of Busan, the second largest city in Korea, is polluting the area. Noise map is a map that shows data on an existing or predicted noise condition in terms of a noise indicator, breaches of a limit value, the number of dwellings exposed to certain values of a noise indicator in a certain area, or on cost-benefit ratios or other economic data on mitigation methods or scenarios with Geographic Information System. With noise map, the effect of traffic noise and the efficiency of city development plan are exactly estimated. So making systematic counteroffer is possible with it. This study is aimed to the construction of basis for noise map construction method for domestic use and the area focus is Busan.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.