• Title/Summary/Keyword: 예측오차 분산분해

Search Result 29, Processing Time 0.022 seconds

Analysis of Shipping Markets Using VAR and VECM Models (VAR과 VECM 모형을 이용한 해운시장 분석)

  • Byoung-Wook Ko
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.69-88
    • /
    • 2023
  • This study analyzes the dynamic characteristics of cargo volume (demand), ship fleet (supply), and freight rate (price) of container, dry bulk, and tanker shipping markets by using the VAR and VECM models. This analysis is expected to enhance the statistical understanding of market dynamics, which is perceived by the actual experiences of market participants. The common statistical patterns, which are all shown in the three shipping markets, are as follows: 1) The Granger-causality test reveals that the past increase of fleet variable induces the present decrease of freight rate variable. 2) The impulse-response analysis shows that cargo shock increases the freight rate but fleet shock decreases the freight rate. 3) Among the three cargo, fleet, and freight rate shocks, the freight rate shock is overwhelmingly largest. 4) The comparison of adjR2 reveals that the fleet variable is most explained by the endogenous variables, i.e., cargo, fleet, and freight rate in each of shipping markets. 5) The estimation of co-integrating vectors shows that the increase of cargo increases the freight rate but the increase of fleet decreases the freight rate. 6) The estimation of adjustment speed demonstrates that the past-period positive deviation from the long-run equilibrium freight rate induces the decrease of present freight rate.

The Inter-correlation Analysis between Oil Prices and Dry Bulk Freight Rates (유가와 벌크선 운임의 상관관계 분석에 관한 연구)

  • Ahn, Byoung-Churl;Lee, Kee-Hwan;Kim, Myoung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.289-296
    • /
    • 2022
  • The purpose of this study was to investigate the inter-correlation between crude oil prices and Dry Bulk Freight rates. Eco-friendly shipping fuels has being actively developed to reduce carbon emission. However, carbon neutrality will take longer than anticipated in terms of the present development process. Because of OVID-19 and the Russian invasion of Ukraine, crude oil price fluctuation has been exacerbated. So we must examine the impact on Dry Bulk Freight rates the oil prices have had, because oil prices play a major role in shipping fuels. By using the VAR (Vector Autoregressive) model with monthly data of crude oil prices (Brent, Dubai and WTI) and Dry Bulk Freight rates (BDI, BCI and (BP I) 2008.10~2022.02, the empirical analysis documents that the oil prices have an impact on Dry bulk Freight rates. From the analysis of the forecast error variance decomposition, WTI has the largest explanatory relationship with the BDI and Dubai ranks seoond, Brent ranks third. In conclusion, WTI and Dubai have the largest impact on the BDI, while there are some differences according to the ship-type.

Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index) (COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.161-173
    • /
    • 2021
  • The shipping industry plummeted and was depressed due to the global economic crisis caused by the bankruptcy of Lehman Brothers in the US in 2008. In 2020, the shipping market also suffered from a collapse in the unstable global economic situation due to the COVID-19 pandemic, but unexpectedly, it changed to an upward trend from the end of 2020, and in 2021, it exceeded the market of the boom period of 2008. According to the Clarksons report published in May 2021, the decrease in cargo volume due to the COVID-19 pandemic in 2020 has returned to the pre-corona level by the end of 2020, and the tramper bulk carrier capacity of 103~104% of the Panamax has been in the ports due to congestion. Earnings across the bulker segments have risen to ten-year highs in recent months. In this study, as factors affecting BDI, the capacity and congestion ratio of Cape and Panamax ships on the supply side, iron ore and coal seaborne tonnge on the demand side and Granger causality test, IRF(Impulse Response Function) and FEVD(Forecast Error Variance Decomposition) were performed using VAR model to analyze the impact on BDI by congestion caused by strengthen quarantine at the port due to the COVID-19 pandemic and the loading and discharging operation delay due to the infection of the stevedore, etc and to predict the shipping market after the pandemic. As a result of the Granger causality test of variables and BDI using time series data from January 2016 to July 2021, causality was found in the Fleet and Congestion variables, and as a result of the Impulse Response Function, Congestion variable was found to have significant at both upper and lower limit of the confidence interval. As a result of the Forecast Error Variance Decomposition, Congestion variable showed an explanatory power upto 25% for the change in BDI. If the congestion in ports decreases after With Corona, it is expected that there is down-risk in the shipping market. The COVID-19 pandemic occurred not from economic factors but from an ecological factor by the pandemic is different from the past economic crisis. It is necessary to analyze from a different point of view than the past economic crisis. This study has meaningful to analyze the causality and explanatory power of Congestion factor by pandemic.

Factor Analysis Affecting on Changes in Handysize Freight Index and Spot Trip Charterage (핸디사이즈 운임지수 및 스팟용선료 변화에 영향을 미치는 요인 분석)

  • Lee, Choong-Ho;Kim, Tae-Woo;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.2
    • /
    • pp.73-89
    • /
    • 2021
  • The handysize bulk carriers are capable of transporting a variety of cargo that cannot be transported by mid-large size ship, and the spot chartering market is active, and it is a market that is independent of mid-large size market, and is more risky due to market conditions and charterage variability. In this study, Granger causality test, the Impulse Response Function(IRF) and Forecast Error Variance Decomposition(FEVD) were performed using monthly time series data. As a result of Granger causality test, coal price for coke making, Japan steel plate commodity price, hot rolled steel sheet price, fleet volume and bunker price have causality to Baltic Handysize Index(BHSI) and charterage. After confirming the appropriate lag and stability of the Vector Autoregressive model(VAR), IRF and FEVD were analyzed. As a result of IRF, the three variables of coal price for coke making, hot rolled steel sheet price and bunker price were found to have significant at both upper and lower limit of the confidence interval. Among them, the impulse of hot rolled steel sheet price was found to have the most significant effect. As a result of FEVD, the explanatory power that affects BHSI and charterage is the same in the order of hot rolled steel sheet price, coal price for coke making, bunker price, Japan steel plate price, and fleet volume. It was found that it gradually increased, affecting BHSI by 30% and charterage by 26%. In order to differentiate from previous studies and to find out the effect of short term lag, analysis was performed using monthly price data of major cargoes for Handysize bulk carriers, and meaningful results were derived that can predict monthly market conditions. This study can be helpful in predicting the short term market conditions for shipping companies that operate Handysize bulk carriers and concerned parties in the handysize chartering market.

Fund Flow and Market Risk (펀드플로우와 시장위험)

  • Chung, Hyo-Youn;Park, Jong-Won
    • The Korean Journal of Financial Management
    • /
    • v.27 no.2
    • /
    • pp.169-204
    • /
    • 2010
  • This paper examines the dynamic relationship between fund flow and market risk at the aggregate level and explores whether sudden sharp changes in fund flow (fund run) can cause a systemic risk in the Korean financial markets. We use daily and weekly data and regression and VAR analysis. Main results of the paper are as follows: First, in the stock market, a concurrent and a lagged unexpected fund flows have a positive relationship with market volatility. A positive shock in fund flow predicts an increase in stock market volatility. In the bond market, an unexpected fund flow has a negative relationship with the default risk premium, but a positive relationship with the term premium. And an unexpected fund flow of the money market fund has a negative relationship with the liquidy risk, but the explanatory power is very low. Second, for examining whether changes in fund flow induce a systemic risk, we construct a spillover index based on the forecast error variance decomposition of VAR model. A spillover index represents that how much the shock in fund flow can explain the change of market risk in a market. In general, explanatory powers from spillover indexes are so fluctuant and low. In the stock market, the impact of shocks in fund flow on market risk is relatively high and persistent during the period from the end of 2007 to 2008, which is the subprime-mortgage crisis period. In bond market, since the end of 2008, the impact of shocks in fund flow spreads to default risk continually, while in the money market, such a systematic effect doesn't take place. The persistent patterns of spillover effect appearing around a certain period in the stock market and the bond market suggest that the shock to the unexpected fund flow may increase the market risk and can be a cause of systemic risk in the financial markets. However, summarizing the results of regression and VAR model analysis, and considering the very low explanatory power of spillover index analysis, we can conclude that changes in fund flow have a very limited power in explaining changes in market risk and it is not very likely to induce the systemic risk by a fund run in the Korean financial markets.

  • PDF

Volatility Spillover Effects between BDI with CCFI and SCFI Shipping Freight Indices (BDI와 CCFI 및 BDI와 SCFI 운임지수 사이의 변동성 파급 효과)

  • Meng-Hua Li;Sok-Tae Kim
    • Korea Trade Review
    • /
    • v.48 no.1
    • /
    • pp.127-163
    • /
    • 2023
  • The objective of this study is to investigate the volatility spillover effects among BDI, CCFI and SCFI. This paper will divide the empirical analysis section into two periods to analyze and compare the differences in volatility spillover effect between shipping freight indices before and after the outbreak of COVID-19 separately. First, in order to compare the mean spillover impact and index lead-lag correlations in BDI and CCFI indices, along with BDI and SCFI indices before and after COVID-19, the co-integration analysis and the test of Granger causality built on the VAR model were utilized. Second, the impulse response and variance decomposition are employed in this work to investigate how the shipping freight index responds to shocks experienced by itself and other freight indices in a short period. Before the COVID-19 epidemic, the results demonstrated that the BDI freight index is the Granger cause of the variable CCFI freight index. But the BDI and CCFI freight indices have no apparent lead-lag relationships after COVID-19, and this empirical result echoes the cointegration test result. After the COVID-19 epidemic, the SCFI index leads the BDI index. This study employs the VAR-BEKK-GARCH joint model to explore the volatility spillover results between dry bulk and container transport markets before and after COVID-19. The empirical results demonstrate that after COVID-19, fluctuations in the BDI index still affect the CCFI index in the maritime market. However, there is no proof of a volatility spillover relationship between the BDI and SCFI after the COVID-19 epidemic. This study will provide an insight into the volatility relationship among BDI, CCFI and SCFI before and after the the COVID-19 epidemic occurred.

An Analysis on Export Behavior to China of Container Port (국내 컨테이너항만의 대중국 수출행태 분석)

  • Son, Yong-Jung
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.2
    • /
    • pp.115-128
    • /
    • 2009
  • This study aims to identify the influence of exchange rate and national economy on Export through container ports (Busan Port, Incheon Port, Gwangyang Port, and Pyeongtaek Port) from January 2001 to October 2007. This study carried a unit root test on the results of the analysis and failed to reject the null hypothesis that level variables have a unit root at the level of 1%. However, it carried out a unit root test on the variables by the first order difference and succeeded in rejecting the null hypothesis aforementioned at the level of 1%. As a result of the cointegration test, it was found that the model is stable. When this study carried out a variance decomposition on the prediction error of export at container various container ports, it found 89% for Busan Port, 83% for Incheon Port, 86% for Gwangyang Port, and 84% for Pyeongtaek Port. These figures indicate that such variables significantly account for export at container ports. For Busan Port, Step 2 of exchange rate showed negative (-) effect, and Step 3 shows an extreme transition into a positive (+) effect. The national economy showed an extreme change from Steps 2 to Step 7, and then a positive effect has been maintained. The Incheon Port, Gwangyang Port and Pyeongtaek Port showed similar trends to Busan Port. From Step 7, it seems that they have Shifted to more stable trends.

  • PDF

A Causality Analysis of the different types of onion prices (주요산지 양파 작형별 가격간 인과관계 분석)

  • Yang, Jin-Suk;Kim, Bae-Sung;Kim, Hwa-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.440-447
    • /
    • 2020
  • The purpose of this study is to identify the causation and variation among the various types of onion prices in the major production sites to predict these prices. The Granger causal relationship was tested on the basis of VECM by setting the onion price of the early, middle, and late species as individual variables. The analysis shows that the amount of onions produced in the prior term affects the price of onions for the later period, while garlic in the substitution relationship with onions also affects the prices of onions for the early and middle-variety. On the other hand, the price of the late-variety is affected by the price of the early-variety, and the price of the middle-variety is also affected by the price of the early-variety. If the price of onions on Jeju changes due to other factors, the prices of onions in Jeollanam-do and Gyeongsangnam-do provinces will be affected. Accordingly, when the production of late-variety increases or decreases in production under any factor and to promote stability of the prices of middle and late-variety through preemptive supply and demand measures when the prices of ultra-breed onions rise or fall due to any factor (Ed- I cannot understand this last sentence and cannot guess at the correct meaning. Please try to rewrite very simply).

A Dynamic Analysis of Import Price of Roundwood (원목수입가격(原木輸入價格)의 동태적(動態的) 분석(分析))

  • Han, Sang-Yoel;Kim, Tae-Kyun;Cho, Jae-Hwan;Choi, Kwan
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • The dynamic relationships among import prices of roundwood are analyzed using the time series approach. A vector autoregression(VAR) model is estimated for six import prices(New Zealand, Chile, Russia, U.S.A., PNG, and Malaysia). Then Granger's causality test, variance decomposition analysis, and impulse response function analysis are also conducted. The major results are summarized as follows : (1) The prices of New Zealand and Russia are caused by only own lagged prices. (2) The prices of Chile and PNG are effected by New Zealand, the price of PNG is effected by New Zealand and Russia, and the price of U.S.A. is effected by those of Chile and PNG, respectively. (3) An exogenous shock in New Zealand will affect the prices of New Zealand, PNG, U.S.A., Chile, Russia. (4) An exogenous shock in Chile may also affect the prices of Chile, U.S.A., Russia.

  • PDF