• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.039 seconds

Assessment and Analysis of Maintenance Level According to Actual Prediction on the Main Infrastructures of North Korea (북한 주요 인프라 실태 예측에 의한 유지관리 수준 분석 및 평가)

  • Lee, Jeong-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.39-46
    • /
    • 2018
  • After the North-South Korean summit and PyeongChang Winter Olympics, it is recently expected that the North-South economic cooperation plan will be discussed in earnest. And it will be growing interest of the major infrastructure facilities such as roads and railways, and so on North-South Korean. Moreover, most of North Korean facilities have problems related to the safety and functionality of them such as aging, deterioration, and poor maintenance. This study asserts the necessity and importance of infrastructure maintenance in the Korean Peninsula. Therefore, Results of this study, it is appeared that very vulnerable to road, railroad, power/communication, water sewage and needed urgently for improvement. Accordingly, The purpose of this study is to investigate the current status for the whole facilities including the main infrastructure of the North Korean and to evaluate on the maintenance level of infrastructure based on face to face interview refugees of North Korean.

LCC Analysis of Steel Plate Bridge Deck Pavement Through Internalization of Improved Functions (기능 개선의 내재화를 통한 강상판 교면포장의 LCC 분석)

  • Baek, Jae Wook;Park, Tae Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.113-123
    • /
    • 2011
  • LCC analysis is a method that coordinates with function evaluation for value improvement, rather than a separate one for cost evaluation. Although its accuracy is rising, materials and structural types developed or applied relatively recently have yet to obtain a sufficient maintenance profile DB, inducing reliability to reduce from difficulties in estimating maintenance records. Based on the above mentioned background, this paper presents the LCC methodology of coordinating functional intensification matters with cost for analysis on alternatives with difficulties in setting maintenance profile. Recently, steel plate bridge deck pavements are faced with problems such as plastic deformation due to the increase in heavy vehicles and traffic, promoting the development of a new compound pavement. This paper execute LCC analysis by mentioning case studies of SMA, Guss and PSMA pavements to include performance scale compared between alternatives as relative evaluation coefficients into the maintenance profile.

A Design of an Improved Linguistic Model based on Information Granules (정보 입자에 근거한 개선된 언어적인 모델의 설계)

  • Han, Yun-Hee;Kwak, Keun-Chang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • In this paper, we develop Linguistic Model (LM) based on information granules as a systematic approach to generating fuzzy if-then rules from a given input-output data. The LM introduced by Pedrycz is performed by fuzzy information granulation obtained from Context-based Fuzzy Clustering(CFC). This clustering estimates clusters by preserving the homogeneity of the clustered patterns associated with the input and output data. Although the effectiveness of LM has been demonstrated in the previous works, it needs to improve in the sense of performance. Therefore, we focus on the automatic generation of linguistic contexts, addition of bias term, and the transformed form of consequent parameter to improve both approximation and generalization capability of the conventional LM. The experimental results revealed that the improved LM yielded a better performance in comparison with LM and the conventional works for automobile MPG(miles per gallon) predication and Boston housing data.

Noise Canceler Based on Deep Learning Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1103-1108
    • /
    • 2023
  • In this paper, we propose a new algorithm for attenuating the background noises in acoustic signal. This algorithm improves the noise attenuation performance by using the FNN(: Full-connected Neural Network) deep learning algorithm instead of the existing adaptive filter after wavelet transform. After wavelet transforming the input signal for each short-time period, noise is removed from a single input audio signal containing noise by using a 1024-1024-512-neuron FNN deep learning model. This transforms the time-domain voice signal into the time-frequency domain so that the noise characteristics are well expressed, and effectively predicts voice in a noisy environment through supervised learning using the conversion parameter of the pure voice signal for the conversion parameter. In order to verify the performance of the noise reduction system proposed in this study, a simulation program using Tensorflow and Keras libraries was written and a simulation was performed. As a result of the experiment, the proposed deep learning algorithm improved Mean Square Error (MSE) by 30% compared to the case of using the existing adaptive filter and by 20% compared to the case of using the STFT(: Short-Time Fourier Transform) transform effect was obtained.

A Multi-sensor basedVery Short-term Rainfall Forecasting using Radar and Satellite Data - A Case Study of the Busan and Gyeongnam Extreme Rainfall in August, 2014- (레이더-위성자료 이용 다중센서 기반 초단기 강우예측 - 2014년 8월 부산·경남 폭우사례를 중심으로 -)

  • Jang, Sangmin;Park, Kyungwon;Yoon, Sunkwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.155-169
    • /
    • 2016
  • In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.

Enhanced Multiresolution Motion Estimation Using Reduction of One-Pixel Shift (단화소 이동 감쇠를 이용한 향상된 다중해상도 움직임 예측 방법)

  • 이상민;이지범;고형화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.868-875
    • /
    • 2003
  • In this paper, enhanced multiresolution motion estimation(MRME) using reduction of one-pixel shift in wavelet domain is proposed. Conventional multiresolution motion estimation using hierarchical relationship of wavelet coefficient has difficulty for accurate motion estimation due to shift-variant property by decimation process of the wavelet transform. Therefore, to overcome shift-variant property of wavelet coefficient, two level wavelet transform is performed. In order too reduce one-pixel shift on low band signal, S$_4$ band is interpolated by inserting average value. Secondly, one level wavelet transform is applied to the interpolated S$_4$ band. To estimate initial motion vector, block matching algorithm is applied to low band signal S$_{8}$. Multiresolution motion estimation is performed at the rest subbands in low level. According to the experimental results, proposed method showed 1-2dB improvement of PSNR performance at the same bit rate as well as subjective quality compared with the conventional multiresolution motion estimation(MRME) methods and full-search block matching in wavelet domain.

Study on Anomaly Detection Method of Improper Foods using Import Food Big data (수입식품 빅데이터를 이용한 부적합식품 탐지 시스템에 관한 연구)

  • Cho, Sanggoo;Choi, Gyunghyun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.19-33
    • /
    • 2018
  • Owing to the increase of FTA, food trade, and versatile preferences of consumers, food import has increased at tremendous rate every year. While the inspection check of imported food accounts for about 20% of the total food import, the budget and manpower necessary for the government's import inspection control is reaching its limit. The sudden import food accidents can cause enormous social and economic losses. Therefore, predictive system to forecast the compliance of food import with its preemptive measures will greatly improve the efficiency and effectiveness of import safety control management. There has already been a huge data accumulated from the past. The processed foods account for 75% of the total food import in the import food sector. The analysis of big data and the application of analytical techniques are also used to extract meaningful information from a large amount of data. Unfortunately, not many studies have been done regarding analyzing the import food and its implication with understanding the big data of food import. In this context, this study applied a variety of classification algorithms in the field of machine learning and suggested a data preprocessing method through the generation of new derivative variables to improve the accuracy of the model. In addition, the present study compared the performance of the predictive classification algorithms with the general base classifier. The Gaussian Naïve Bayes prediction model among various base classifiers showed the best performance to detect and predict the nonconformity of imported food. In the future, it is expected that the application of the abnormality detection model using the Gaussian Naïve Bayes. The predictive model will reduce the burdens of the inspection of import food and increase the non-conformity rate, which will have a great effect on the efficiency of the food import safety control and the speed of import customs clearance.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

A Distributed Web-DSS Approach for Coordinating Interdepartmental Decisions - Emphasis on Production and Marketing Decision (부서간 의사결정 조정을 위한 분산 웹 의사결정지원시스템에 관한 연구)

  • 이건창;조형래;김진성
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.291-300
    • /
    • 1999
  • 인터넷을 기반으로 한 정보통신의 급속한 발전이라는 기업환경의 변화에 적응하기 위해서 기업은 점차 모든 경영시스템을 인터넷을 기반으로 하도록 변화시키고 있을 뿐만 아니라, 기업 조직 또한 전세계를 기반으로한 글로벌 기업 형태로 변화하고 있다. 이러한 급속한 경영환경의 변화로 인해서 기업 내에서는 종전과는 다른 형태의 부서간 상호의사결정조정 과정이 필요하게 되었다. 일반 기업들을 대상으로 한 상호의사결정의 지원과정에 대해서는 기존에 많은 연구들이 있었으나 글로벌기업과 같은 네트워크 형태의 새로운 형태의 기업에 있어서의 상호의사결정과정을 지원할 수 있는 의사결정지원시스템에 대해서는 단순한 그룹의사결정지원시스템 또는 분산의사결정지원시스템과 같은 연구들이 주를 이루고 있다. 따라서 본 연구에서는 인터넷 특히, 웹을 기반으로 한 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 메커니즘을 제시하고 이에 기반한 프로토타입 형태의 시스템을 구현하여 성능을 검증하고자 한다. 특히, 기업 내에서 가장 대표적으로 상호의사결정지원이 필요한 생산과 마케팅 부서를 대상으로 상호의사결정지원 메커니즘을 개발하고 실험을 진행하였다. 그 결과 글로벌 기업내의 생산과 마케팅 부서간 상호의사결정을 효율적으로 지원 할 수 있는 상호조정 메카니즘인 개선된 PROMISE(PROduction and Marketing Interface Support Environment)를 기반으로 한 웹 분산의사결정지원시스템 (Web-DSS : Web-Decision Support Systems)을 제안하는 바이다.자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer

  • PDF

Study of Selective Cell Drop Scheme using Fuzzy Logic on TCP/IP (TCP/IP에서 퍼지 논리를 사용한 선택적 셀 제거 방식에 관한 연구)

  • 조미령;양성현;이상훈;강준길
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents some studies on the Internet TCP/IP(Transmission Control Protocol-Internet Protocol) traffic over ATM(Asynchronous Transfer Mode) UBR(Unspecified Bit Rate) and ABR(Available Bit Rate) classes of service. Fuzzy logic prediction has been used to improve the efficiency and fairness of traffic throughput. For TCP/IP over UBR, a novel fuzzy logic based cell dropping scheme is presented. This is referred to as fuzzy logic selective cell drop (FSCD). A key feature of the scheme is its ability to accept or drop a new incoming packet dynamically based on the predicted future buffer condition in the switch. This is achieved by using fuzzy logic prediction for the production of a drop factor. Packet dropping decision is then based on this drop factor and a predefined threshold value. Simulation results show that the proposed scheme significantly improves TCP/IP efficiency and fairness. To study TCP/IP over ABR, we applied the fuzzy logic ABR service buffer management scheme from our previous work to both approximate and exact fair rate computation ER(Explicit cell Rate) switch algorithms. We then compared the performance of the fuzzy logic control with conventional schemes. Simulation results show that on zero TCP packet loss, the fuzzy logic control scheme achieves maximum efficiency and perfect fairness with a smaller buffer size. When mixed with VBR traffic, the fuzzy logic control scheme achieves higher efficiency with lower cell loss.

  • PDF