Journal of Korea Spatial Information System Society
/
v.9
no.1
/
pp.1-13
/
2007
The necessity of future index is increasing to predict the future location of moving objects promptly for various location-based services. A representative research topic related to future index is the probability trajectory prediction technique that improves reliability using the past trajectory information of moving objects in the road network environment. However, the prediction performance of this technique is lowered by the heavy load of extensive future trajectory search in long-range future queries, and its index maintenance cost is high due to the frequent update of future trajectory. Thus, this paper proposes the Probability Cell Trajectory-Tree (PCT-Tree), a cell-based future indexing technique for efficient long-range future location prediction. The PCT-Tree reduces the size of index by rebuilding the probability of extensive past trajectories in the unit of cell, and improves the prediction performance of long-range future queries. In addition, it predicts reliable future trajectories using information on past trajectories and, by doing so, minimizes the cost of communication resulting from errors in future trajectory prediction and the cost of index rebuilding for updating future trajectories. Through experiment, we proved the superiority of the PCT-Tree over existing indexing techniques in the performance of long-range future queries.
A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.
문장내 휴지구간의 위치와 길이는 합성음의 자연성을 결정짓는 주요 운율 파라미터 중 하나이다. 본 연구에서는 한국어 음성합성기의 합성음 생성에서 자연성 개선을 위해서 문장내 끊어읽기 위치 및 길이를 추정하기 위한 방법을 제안한다. 먼저 실제 발화에서 끊어 읽기가 발생하는 요인을 검토하였다. 그리고 이들 요인에 부합하여 텍스트에 4단계의 끊어 읽기를 표기함으로써 다량의 데이터를 확보하고 이를 이용한 NN 학습 결과와 HMM 추정 기의 성능을 비교 검토한다. 현재까지의 결과로는 NN 학습의 경우 끊어읽기 없는 경우와 긴 끊어읽기의 추정에서는 우수한 예측능력을 보이지만 짧은 끊어읽기, 중간 끊어읽기의 경 우는 HMM의 성능이 우수한 것으로 판명되었다. 전반적인 성능에서는 HMM이 우수하며 끊어읽기 종류에 따라 추정오차가 10∼25%로서 안정적인 결과를 얻었으며 TTS에의 활용 가능성을 보였다.
Journal of Advanced Marine Engineering and Technology
/
v.21
no.5
/
pp.463-468
/
1997
잔류응력이 부품의 성능에 미치는 영향에 대해 많은 연구가 되어져왔고, 이를 성능개선에 효과적으로 응용하는 많은 방법들이 소개되었다. 또한, 부품의 가공성, 변형 등에 대한 잔류응력의 영향을 정량적 또는 정성적으로 해석하는 연구가 지속되어져 왔을 뿐 아니라, 복합재료 내에서의 잔류응력과 그의 영향에 대해서도 활발한 연구가 계속되고 있다. 이처럼 잔류응력의 분야는 그의 측정, 응용 및 구조물내의 역할 등에 대한 연구의 잠재성이 큰 분야이다. 잔류응력이 부품의 성능에 미치는 영향에 대한 정확한 예측과 효율적 응용을 위해서는 잔류응력을 비파괴적으로, 정량적으로 정확히 그리고 부품 전체에 걸쳐 현장에서 신속히 측정할수 있는 방법이 절실히 요구되어지고 있지만 아직 이러한 방법은 존재하지 않는다. 여기에 대한 연구가 이루어지고 방법이 개발되어질 수 있다면 이는 대단히 획기적인 연구가 될 것이다. Neutron diffraction technique이 이에 가장 근접한 방법이 되겠으나 현장에서의 신속한 측정에는 아직 매우 미흡하다.
Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.216-220
/
1995
음성 신호처리분야의 기반을 이루고 잇는 선형예측기법으로 성대폐쇄구간 분석이 가능해질 경우 특히 음성합성가 부호화 시스템의 상당한 성능개선을 기대할 수 있기 때문에 최근 관련 분야에서 높은 신뢰도를 갖는 GCI 검출 알고리즘 개발에 많은 관심을 보이고 있다. 성대폐쇄구간 검출에서 가장 중요한 것은 성대폐쇄시점에 관한 정보이며, 본 논문에서는 이에 대응될 수 있는 정보인 epoch를 음성신호에서 직접 추출할 수 있는 기법을 제안하였다. 제안된 방법은 프레임 단위별 평균 피치를 참조하여 저역통과된 유성음 신호에서 3구간 영교차점별 평균진폭 변동율에 의해 pseudo-epoch를 검출한다. 대역 통과된 유성음 신호를 이용하여 pseudo-epoch 부근에 존재하는 보다 정밀한 실제 epoch을 최종적으로 결정하였다. 제안된 방법은 단계적으로 epoch가 존재할 수 있는 연역을 좁혀 나아가면서 처리하므로 검출오차를 줄일 수 있었고, 시간영역에서 처리되어 계산량이 적으므로 고속 처리가 가능하였다. 성능평가를 위해 처리결과를 EGG 신호와 비교한 결과 약 2샘플 정도의 오차만을 갖는 우수한 성능을 나타내었다.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.37
no.2
/
pp.209-214
/
2009
The simulation software for predicting the performance of a wind turbine generator system (WTGS) is validated using the field measured data obtained from the idling test run of a dual rotor wind turbine recently developed and installed in Korea. Both steady-state and transient responses at low and high wind conditions are compared with the theoretically predicted ones from the simulation software WINSIM.
Kim, Bongsu;Whang, Taesun;Kim, Jungwook;Lee, Saebyeok
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.98-102
/
2020
의존 구문 분석은 입력된 문장 내의 어절 간의 의존 관계를 예측하기 위한 자연어처리 태스크이다. 최근에는 BERT와 같은 사전학습 모델기반의 의존 구문 분석 모델이 높은 성능을 보이고 있다. 본 논문에서는 추가적인 성능 개선을 위해 ALBERT, ELECTRA 언어 모델을 형태소 분석과 BPE를 적용해 학습한 후, 인코딩 과정에 사용하였다. 또한 의존소 어절과 지배소 어절의 특징을 specific하게 추상화 하기 위해 두 개의 트랜스포머 인코더 스택을 추가한 의존 구문 분석 모델을 제안한다. 실험결과 제안한 모델이 세종 코퍼스에 대해 UAS 94.77 LAS 94.06의 성능을 보였다.
최근 디지털 헬스케어 기술과 서비스가 널리 활용되면서 의료 인공지능 성능 향상에 대한 관심이 높아지고 있다. 그러나 양성 데이터 대비 질병 데이터가 희소하여 학습 과정에서 과적합이 발생하거나 질병 예측 모델의 성능이 떨어진다는 한계가 있다. 본 논문에서는 데이터가 균질하지 않은 상황에서 생성형 인공지능 모델을 사용하여 합성 데이터를 생성하는 방안을 제안한다. 실험 결과에 따르면, 종래 방법 대비 제안한 방법의 정확도가 약 5.8% 향상되었고, 재현율이 약 21% 개선되었다.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.10
/
pp.33-46
/
2015
In this paper, we predicts the analog and digital circuit performance of FinFETs that are scaled down following the ITRS(International technology roadmap for semiconductors). For accurate prediction of the circuit performance of scaled down devices, accurate parasitic resistance and capacitance analytical models are developed and their accuracies are within 2 % compared to 3D TCAD simulation results. The parasitic capacitance models are developed using conformal mapping, and the parasitic resistance models are enhanced to include the fin extension length($L_{ext}$) with respect to the default parasitic resistance model of BSIM-CMG. A new algorithm is developed to fit the DC characteristics of BSIM-CMG to the reference DC data. The proposed capacitance and resistance models are implemented inside BSIM-CMG to replace the default parasitic model, and SPICE simulations are performed to predict circuit performances such as $f_T$, $f_{MAX}$, ring oscillators and common source amplifier. Using the proposed parasitic capacitance and resistance model, the device and circuit performances are quantitatively predicted down to 5 nm FinFET transistors. As the FinFET technology scales, due to the improvement in both DC characteristics and the parasitic elements, the circuit performance will improve.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.6
/
pp.700-707
/
2016
Recently, ammunition malfunctions of the 40mm grenade were reported during live fire training. When 72 40mm grenades were fired by the army, 11 duds were encountered. The dud ammunition rate was approximately 15%. Because ammunition is used a long time after its manufacture, it is necessary to ensure its performance after long-term storage. In this study, we attempted to decrease the dud ammunition rate of 40mm grenade (K200) fuzes through quality improvement. First, it was determined by the detonator performance test that abnormal explosions occurred due to the degradation of the detonator as a result of its aging characteristics. Second, we improved the fuze quality of the 40mm grenade. Third, we tested its shelf life to estimate its life expectancy. The shelf life of the 40mm grenade fuze obtained using the Arrhenius equation was 6.5 years for the existing grenade fuze and 45.5 years for the improved grenade fuze. This showed that the shelf life of the improved grenade was increased approximately 7 times. Therefore, the improved 40mm grenade fuze contributes to the quality improvement of the 40mm grenade by decreasing the dud ammunition rate during long term storage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.