• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.038 seconds

Filter Cache Predictor Using Mode Selection Bit (모드 선택 비트를 사용한 필터 캐시 예측기)

  • Kwak, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.1-13
    • /
    • 2009
  • Filter cache has been introduced as one solution of reducing cache power consumption. More than 50% of the power reduction results from the filter cache, whereas more than 20% of the performance is compromised. To minimize the performance degradation of the filter cache, the predictive filter cache has been proposed. In this paper, we review the previous filter cache predictors and analyze the problems of the solutions. As a result, we found main problems that cause prediction misses in previous filter cache schemes and, to resolve the problems, this paper proposes a new prediction policy. In our scheme, some reference bit entries, called MSBs, are inserted into filter cache and BTB, to adaptively control the filter cache access. In simulation parts, we use a modified SimpleScalar simulator with MiBench benchmark programs to verify the proposed filter cache. The simulation result shows in average 5% performance improvement, compared to previous ones.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

Evolutionary Optimization of Models for Mature microRNA Prediction (Mature microRNA 위치 예측 모델의 진화적 최적화)

  • Kim Jin-Han;Nam Jin-Wu;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.67-69
    • /
    • 2006
  • MicroRNA (miRNA)는 생체내에서 gene regulation에 관여하는 핵심 small RNA 중 하나이다. miRNA는 Primary miRNA, Precursor miRNA, mature miRNA의 과정으로 processing 된다. miRNA 최종 형태인 mature miRNA의 정확한 위치 예측은 miRNA 예측의 필수적인 부분이다. 본 논문에서는, 진화적 최적화 예측 모델 중 하나인 유전 알고리즘을 이용하여 mature miRNA의 정확한 위치 예측을 수행한다. 제시된 방법은 이미 알려진 mature miRNA 위치를 positive example로 하고 임의로 생성한 위치를 negative example로 하여 서로의 linear scoring function 적합성 함수의 값 차이가 최대한으로 되도록 예측 모델을 진화시킨다. 유전 알고리즘을 이용한 진화적 최적화 모델로부터 mature miRNA 위치 예측에서 약 1.7nt 오차를 보여 기존의 방법 보다 개선된 성능을 보인다.

  • PDF

유비쿼터스 컴퓨팅을 위한 지능적인 사용자 위치 이동 학습 및 예측

  • 유지오;김경중;조성배
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.139-148
    • /
    • 2004
  • 사용자의 지리적 위치에 따른 서비스를 제공하는 위치기반서비스는 유비쿼터스 컴퓨팅의 중요한 응용으로 여러 위치 감지기술과 다양한 시험 및 상용 서비스들이 개발되어 왔다. 하지만 기존의 위치기반서비스는 단순히 위치와 서비스를 정적으로 연결하는 기법에 그치고 있어 서비스의 유연성이 떨어지는 한계가 있다. 이를 개선하기 위해 위치 정보로부터 고수준 정보를 추론하여 보다 지능적인 서비스를 제공하려는 연구들이 이루어지고 있다. 본 논문에서는 사용자의 위치이동 데이터를 학습하여 미래의 위치 이동 경로를 예측하는 기법을 제안한다. GPS(Global Positioning System)를 사용하여 수집된 시퀸스 데이터를 시퀸스 데이터 처리에 특화된 RSOM (Recurrent Self Organizing Map)을 사용하여 클러스터링하고 이를 마르코브 모델을 사용하여 학습하여 각 위치 이동 패턴 모델을 구축한다. 현재의 위치이동 패턴을 구축된 각 이동패턴 모델들과 비교하여 가장 유사한 위치 이동패턴으로 미래의 사용자이동을 예측한다. 제안한 위치이동 예측 기법을 평가하기 위해 실제 대학생의 생활을 기반으로 하여 GPS 데이터를 대학 캠퍼스 상에서 수집하고 이를 이용하여 제안한 방법의 학습 및 예측 성능을 평가한다. 그 결과 제안한 방법을 사용하여 사용자의 미래의 위치이동경로를 예측하는 것이 가능하고 불확실한 상황에서도 유연하게 예측을 수행함을 확인하였다.

  • PDF

Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula (북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용)

  • Choi, Woosuk;Ho, Chang-Hoi;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.565-571
    • /
    • 2014
  • A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.

Performance Analysis of Similarity Reflecting Jaccard Index for Solving Data Sparsity in Collaborative Filtering (협력필터링의 데이터 희소성 해결을 위한 자카드 지수 반영의 유사도 성능 분석)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • It has been studied to reflect the number of co-rated items for solving data sparsity problem in collaborative filtering systems. A well-known method of Jaccard index allowed performance improvement, when combined with previous similarity measures. However, the degree of performance improvement when combined with existing similarity measures in various data environments are seldom analyzed, which is the objective of this study. Jaccard index as a sole similarity measure yielded much higher prediction quality than traditional measures and very high recommendation quality in a sparse dataset. In general, previous similarity measures combined with Jaccard index improved performance regardless of dataset characteristics. Especially, cosine similarity achieved the highest improvement in sparse datasets, while similarity of Mean Squared Difference degraded prediction quality in denser sets. Therefore, one needs to consider characteristics of data environment and similarity measures before combining Jaccard index for similarity use.

Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow (대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • High-reliability prediction of dam inflow is necessary for efficient dam operation. Recently, studies were conducted to predict the inflow of dams using Multi Layer Perceptron (MLP). Existing studies used the Gradient Descent (GD)-based optimizer as the optimizer among MLP operators to find the optimal correlation between data. However, the GD-based optimizers have disadvantages in that the prediction performance is deteriorated due to the possibility of convergence to the local optimal value and the absence of storage space. This study improved the shortcomings of the GD-based optimizer by developing Adaptive moments combined with Improved Harmony Search (AdamIHS), which combines Adaptive moments among GD-based optimizers and Improved Harmony Search (IHS). In order to evaluate the learning and prediction performance of MLP using AdamIHS, Daecheong Dam inflow was learned and predicted and compared with the learning and prediction performance of MLP using GD-based optimizer. Comparing the learning results, the Mean Squared Error (MSE) of MLP, which is 5 hidden layers using AdamIHS, was the lowest at 11,577. Comparing the prediction results, the average MSE of MLP, which is one hidden layer using AdamIHS, was the lowest at 413,262. Using AdamIHS developed in this study, it will be possible to show improved prediction performance in various fields.

A Target Tracking Accuracy Improvement Method by Kalman Filter for EOTS with Time Delay (시간지연을 가지는 전자광학 추적 시스템의 칼만필터를 이용한 표적 추적 성능 개선 방법)

  • 마진석;권우현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.170-182
    • /
    • 1999
  • In this paper, we present a tracking accuracy enhancement method by compensating the time delay of the video tracker in an EOTS. The proposed method has two functional parts, which can cope with the time delay of LOS and maneuvering target informations by Smith predictor and Kalman filter. So it can dramatically reduce the tracking error over conventional PI control or Smith predictor control. To verify the proposed method, various and extensive simulation and experimental results are given.

  • PDF

Korean Sentiment Analysis using Rationale (근거를 이용한 한국어 감성 분석)

  • Young-Jun Jung;Chang-Ki Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.160-163
    • /
    • 2022
  • 감성 분석(sentiment analysis)은 자연어 문장에 나타나는 감정 상태나 주관적인 의견을 분석하는 작업이다. 최근에는 자연어 처리(Natural Language Processing) 작업에서 딥러닝 기반의 모델이 좋은 성능을 보여주고 있다. 하지만, 모델의 복잡한 구조 때문에 모델이 어떠한 근거(rationale)로 판단하였는지 해석하기 어려운 문제가 있다. 모델이 좋은 성능을 보여도 예측에 관한 판단 근거가 없으면 결과를 해석하기 어렵고, 모델에 대한 신뢰가 떨어진다. 본 논문에서는 한국어 감성 분석 작업에 대해 사후 해석 모델을 이용하여 모델의 예측 결과에 대한 근거를 추출하고, 추출한 근거 정보를 이용한 근거 임베딩을 사용하여 근거 정보를 통합하는 방법이 감성 분석 모델의 성능을 개선함을 보인다.

  • PDF

A Study on the OCR of Korean Sentence Using DeepLearning (딥러닝을 활용한 한글문장 OCR연구)

  • Park, Sun-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.470-474
    • /
    • 2019
  • 한글 OCR 성능을 높이기 위해 딥러닝 모델을 활용하여 문자인식 부분을 개선하고자 하였다. 본 논문에서는 폰트와 사전데이터를 사용해 딥러닝 모델 학습을 위한 한글 문장 이미지 데이터를 직접 생성해보고 이를 활용해서 한글 문장의 OCR 성능을 높일 다양한 모델 조합들에 대한 실험을 진행했다. 딥러닝 모델은 STR(Scene Text Recognition) 구조를 사용해 변환, 추출, 시퀀스, 예측 모듈 각 24가지 모델 조합을 구성했다. 딥러닝 모델을 활용한 OCR 실험 결과 한글 문장에 적합한 모델조합은 변환 모듈을 사용하고 시퀀스와 예측 모듈에는 BiLSTM과 어텐션을 사용한 모델조합이 다른 모델 조합에 비해 높은 성능을 보였다. 해당 논문에서는 이전 한글 OCR 연구와 비교해 적용 범위를 글자 단위에서 문장 단위로 확장하였고 실제 문서 이미지에서 자주 발견되는 유형의 데이터를 사용해 애플리케이션 적용 가능성을 높이고자 한 부분에 의의가 있다.

  • PDF