• Title/Summary/Keyword: 예측선량

Search Result 169, Processing Time 0.033 seconds

The apoptotic fragment assay in rat peripheral lymphocytes and crypt cells with whole body irradiation with 60Co ϒ-rays and 50 MeV cyclotron fast neutrons (코발트-60 감마선과 50 MeV 싸이크로트론 고속 중성자선에 전신조사된 랫드의 말초 임파구와 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.203-210
    • /
    • 2001
  • Here, we compared the effectiveness of 50 MeV($p{\to}RBe^+$) cyclotron fast neutrons versus $^{60}Co$ ${\gamma}$-rays by the apoptotic fragment frequency in both rat peripheral lymphocytes and crypt cells to check a radiobiological endpoint. The incidence of apoptotic cell death was increased in all irradiated groups, and radiation at all doses trigger rapid changes in both crypt cells and peripheral lymphocytes. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for these data of apoptotic fragments frequencies was $y=0.3+(6.512{\pm}0.279)D(r^2=0.975)$ after neutrons, while $y=0.3+(4.435{\pm}0.473)D+(-1.300{\pm}0.551)D^2(r^2=0.988)$ after ${\gamma}$-rays. In addition, $y=3.5+(118.410{\pm}10.325)D+(-33.548{\pm}12.023)D^2(r^2=0.992)$ after ${\gamma}$-rays in rat lymphocytes. A significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic cells with increasing dose. Dose-response curves for high and low linear energy transfer (LET) radiation modalities in these studies were different. The relative biological effectiveness (RBE) value for crypt cells was 1.919. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morphological findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis induction in both crypt cells and peripheral lymphocytes could be a useful endpoint of rat model for studying screening test and microdosimetic indicator to evaluate the biological effects of radiation-induced cell damage.

  • PDF

Evaluation of Radiation Exposure to Nurse on Nuclear Medicine Examination by Use Radioisotope (방사성 동위원소를 이용한 핵의학과 검사에서 병동 간호사의 방사선 피폭선량 평가)

  • Jeong, Jae Hoon;Lee, Chung Wun;You, Yeon Wook;Seo, Yeong Deok;Choi, Ho Yong;Kim, Yun Cheol;Kim, Yong Geun;Won, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Purpose Radiation exposure management has been strictly regulated for the radiation workers, but there are only a few studies on potential risk of radiation exposure to non-radiation workers, especially nurses in a general ward. The present study aimed to estimate the exact total exposure of the nurse in a general ward by close contact with the patient undergoing nuclear medicine examinations. Materials and Methods Radiation exposure rate was determined by using thermoluminescent dosimeter (TLD) and optical simulated luminescence (OSL) in 14 nurses in a general ward from October 2015 to June 2016. External radiation rate was measured immediately after injection and examination at skin surface, and 50 cm and 1 m distance from 50 patients (PET/CT 20 pts; Bone scan 20 pts; Myocardial SPECT 10 pts). After measurement, effective half-life, and total radiation exposure expected in nurses were calculated. Then, expected total exposure was compared with total exposures actually measured in nurses by TLD and OSL. Results Mean and maximum amount of radiation exposure of 14 nurses in a general ward were 0.01 and 0.02 mSv, respectively in each measuring period. External radiation rate after injection at skin surface, 0.5 m and 1 m distance from patients was as following; $376.0{\pm}25.2$, $88.1{\pm}8.2$ and $29.0{\pm}5.8{\mu}Sv/hr$, respectively in PET/CT; $206.7{\pm}56.6$, $23.1{\pm}4.4$ and $10.1{\pm}1.4{\mu}Sv/hr$, respectively in bone scan; $22.5{\pm}2.6$, $2.4{\pm}0.7$ and $0.9{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. After examination, external radiation rate at skin surface, 0.5 m and 1 m distance from patients was decreased as following; $165.3{\pm}22.1$, $38.7{\pm}5.9$ and $12.4{\pm}2.5{\mu}Sv/hr$, respectively in PET/CT; $32.1{\pm}8.7$, $6.2{\pm}1.1$, $2.8{\pm}0.6$, respectively in bone scan; $14.0{\pm}1.2$, $2.1{\pm}0.3$, $0.8{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. Based upon the results, an effective half-life was calculated, and at 30 minutes after examination the time to reach normal dose limit in 'Nuclear Safety Act' was calculated conservatively without considering a half-life. In oder of distance (at skin surface, 0.5 m and 1 m distance from patients), it was 7.9, 34.1 and 106.8 hr, respectively in PET/CT; 40.4, 199.5 and 451.1 hr, respectively in bone scan, 62.5, 519.3 and 1313.6 hr, respectively in myocardial SPECT. Conclusion Radiation exposure rate may differ slightly depending on the work process and the environment in a general ward. Exposure rate was measured at step in the general examination procedure and it made our results more reliable. Our results clearly showed that total amount of radiation exposure caused by residual radioactive isotope in the patient body was neglectable, even comparing with the natural radiation exposure. In conclusion, nurses in a general ward were much less exposed than the normal dose limit, and the effects of exposure by contacting patients undergoing nuclear medicine examination was ignorable.

  • PDF

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Planning of Optimal Work Path for Minimizing Exposure Dose During Radiation Work in Radwaste Storage (방사성 폐기물 저장시설에서의 방사선 작업 중 피폭선량 최소화를 위한 최적 작업경로 계획)

  • Park, Won-Man;Kim, Kyung-Soo;Whang, Joo-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • Since the safety of nuclear power plant has been becoming a big social issue the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate does not depend on the location within a work space thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation doting radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, tile developed numerical method and simulation program could be useful tools in the planning of radiation work.

Assessment of Entrance Surface Dose and Image Distortion in Accordance with Abdominal Obesity in the Chest Radiography (흉부 X-선 검사에서 복부비만에 따른 입사표면선량과 영상 왜곡도 평가)

  • Kim, Boo Soon;Park, Jeong Kyu;Kwon, Soon Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.473-478
    • /
    • 2015
  • Abdominal obesity is one of the most influential index to predict of insulin resistance syndrome/metabolic syndrome in social demographic characteristics. It is matter of fact that radiation dose are increasing with development of medical treatment and device. In this study, we estimated distortion between reference image and entrance surface dose when take a chest radiography forward chest phantom assumed abdominal obesity. When angle of chest phantom incline $5^{\circ}$ forward, thoracic transverse and longitudinal diameter increase 1.22% and 0.44% each. Also cardiac transverse diameter increase 1.01% and cardio-throracic ratio (CTR) decrease 0.27% in the same situation of incline to $5^{\circ}$ forward. Thoracic transverse diameter shows the largest increase, and CTR was decreased. But entrance surface dose to phantom increase significantly 6.12% when angle of chest phantom incline $5^{\circ}$ forward. In conclusion, we have to pay attention to accurate positioning, to prevent a distortion of image through incline, and make patients not to expose to additional radiation.

Optimization of Cultivation and Storage Conditions on Red Cabbage Seed Sprouts (적양배추 새싹채소의 발아 및 저장 조건 최적화)

  • Baek, Kyeong-Hwan;Jo, Doekjo;Yoon, Sung-Ran;Kim, Gui-Ran;Park, Ju-Hwan;Lee, Gee-Dong;Kim, Jeong-Sook;Kim, Yuri;Han, Bumsoo;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • This study was carried out to find the optimal conditions for red cabbage seed sprouts in terms of their physicochemical and sensory qualities by electron-beam irradiation, cultivation and storage using the response surface methodology (RSM). Moisture content ($R^2$=0.9638) was affected by irradiation dose and cultivation time. Total phenolics content ($R^2$=0.9117) was mainly affected by irradiation dose, but carotenoid content ($R^2$=0.8338) was affected in the order of irradiation dose, cultivation time and storage time. Sensory properties were also affected by irradiation dose, and thus scores decreased as irradiation dose increased. The optimum conditions estimated by superimposing total phenolics content and overall acceptance were 2.2-3.8 kGy of the irradiation dose, 3.0-4.0 days of cultivation and 2.0-3.0 days of storage.

Biological Markers as Predictors of Radiosensitivity in Syngeneic Murine Tumors (동계 마우스 종양의 방사선 감수성 예측인자로서의 생물학적 표지자)

  • Chang Sei-Kyung;Kim Sung-Hee;Shin Hyun-Soo;Seong Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • Purpose: We investigated whether a relationship exists between tumor control dose 50 ($TCD_{50}$) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between $TCD_{50}$, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Materials and Methods: Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used In this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were $8{\sim}12$ weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for $TCD_{50}$, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of $p53,\;p21^{WAF1/CIP1},\;BAX,\;Bcl-2,\;Bcl-X_L,\;Bcl-X_S$, and p34. Correlation analysis was peformed whether the level of RIA were correlated with $TCD_{50}$ or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with $TCD_{50}$, TGD, RIA. Results: The level of RIA showed a significant positive correlation (R=0.922, p=0.026) with TGD, and showed a trend to correlation (R=-0.848), marginally significant correlation with $TCD_{50}$ (p=0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of $p21^{WAF1/CIP1}$ and 34 showed a significant correlation either with $TCD_{50}$ (R=0.893, p=0.041 and R=0.904, p=0.035) or with TGD (R=-0.922, p=0.026 and R=-0.890 p=0.043). The tumors with high constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 were less radiosensitive than those with low expression. Conclusion: Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 can be used as biological markers which predict the radiosensitivity.

A Study on Electron Dose Distribution of Cones for Intraoperative Radiation Therapy (수술중 전자선치료에 있어서 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Yun, Hyong-Geun
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1992
  • For intraoperative radiation therapy using electron beams, a cone system to deliver a large dose to the tumor during surgical operation and to save the surrounding normal tissue should be developed and dosimetry for the cone system is necessary to find proper X-ray collimator setting as well as to get useful data for clinical use. We developed a docking type of a cone system consisting of two parts made of aluminum: holder and cone. The cones which range from 4cm to 9cm with 1cm step at 100cm SSD of photon beam are 28cm long circular tubular cylinders. The system has two 26cm long holders: one for the cones larger than or equal to 7cm diamter and another for the smaller ones than 7cm. On the side of the holder is an aperture for insertion of a lamp and mirror to observe treatment field. Depth dose curve. dose profile and output factor at dept of dose maximum. and dose distribution in water for each cone size were measured with a p-type silicone detector controlled by a linear scanner for several extra opening of X-ray collimators. For a combination of electron energy and cone size, the opening of the X-ray collimator was caused to the surface dose, depths of dose maximum and 80%, dose profile and output factor. The variation of the output factor was the most remarkable. The output factors of 9MeV electron, as an example, range from 0.637 to 1.549. The opening of X-ray collimators would cause the quantity of scattered electrons coming to the IORT cone system. which in turn would change the dose distribution as well as the output factor. Dosimetry for an IORT cone system is inevitable to minimize uncertainty in the clinical use.

  • PDF