Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy

고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구

  • Jeong, Hae-Sun (Radiation Interactions and Dosimetry Lab, Department of Nuclear Engineering, Hanyang University) ;
  • Han, Young-Yih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kum, O-Yeon (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Chan-Hyeong (Radiation Interactions and Dosimetry Lab, Department of Nuclear Engineering, Hanyang University)
  • 정해선 (한양대학교 공과대학 원자력공학과 방사선해석연구실) ;
  • 한영이 (성균관대학교 의과대학 삼성서울병원 방사선종양학과) ;
  • 금오연 (경북대학교 전자전기컴퓨터학부) ;
  • 김찬형 (한양대학교 공과대학 원자력공학과 방사선해석연구실)
  • Published : 2009.12.31

Abstract

In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

고에너지 광자선 기반의 소조사면을 이용한 방사선 치료 시, 조사면의 가장자리에서의 급격한 선량 변화, 전자의 비평형상태, 검출기의 체적 효과 및 검출기와 팬텀 물질과의 불균질성 등으로 인하여 정확한 선량 측정이 어렵다. 따라서 본 연구에서는 선량 측정을 위해 널리 사용되는 전리함, 다이오드 검출기 및 물과 등가인 재질로 이루어져 측정 시 오차 유발 요인이 적은 것으로 알려진 $GAFCHROMIC^{(R)}$ EBT 필름을 이용하여 팬텀 내 소조사면에서의 흡수선량을 측정하고, 각 검출기들의 특성 및 EBT 필름의 유용성을 평가하였다. 각 검출기는 팬텀 표면으로부터 10 cm 깊이에 장착, 선원과의 거리(SAD)를 100 cm로 하였으며, 6 MV X-선 빔을 6개 조사면($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$$0.5{\times}0.5\;cm^2$)으로 팬텀에 조사하였다. $5{\times}5\;cm^2{\sim}1.5{\times}1.5\;cm^2$ 조사면의 경우, 모든 검출기들의 선량값이 1% 이내로 정확하게 일치하였으나, $1{\times}1\;cm^2$ 이하 조사면에서는 전리함을 이용한 측정결과가 타 검출기들에 비해 선량값을 매우 낮게 평가하는 것으로 확인되었다. 이는 검출기 체적효과가 매우 큰 오차요인으로 작용한 것으로 예측되어, 이를 제거하기 위해 제적 효과를 보정하는 컨볼루션 이론을 적용하여 측정된 선량값을 보정하였다. 그 결과, 다이오드 검출기의 경우 $1{\times}1\;cm^2$의 조사면에서는 EBT 필름의 흡수선량보다 약 3%가 높게, 전리함은 약 1% 낮게 측정되었다. $0.5{\times}0.5\;cm^2$ 조사면에서 다이오드 검출기는 약 1% 높은 값을, 전리함은 7% 낮은 선량값을 나타내었다. 결론적으로 $GAFCHROMIC^{(R)}$ EBT 필름의 소조사면 선량측정기로서의 유용성을 확인하였으며, 몬테카를로 전산모사를 이용한 추가 검증이 수행될 예정이다.

Keywords

References

  1. Khan FM: The physics of Radiation Therapy. 2nd ed, Williams & Wilkins, Baltimore, MD(1994), pp. 481-506
  2. Capote R, Sanchez-Doblado F, Leal A, Lagares JI, Arrans R, Hartmann: An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets Med Phys 31(9):2416-2422 (2004) https://doi.org/10.1118/1.1767691
  3. Han Y, Shin EH, Lim C, et al: Dosimetry in an IMRT phantom designed for a remote monitoring program. Med Phys 35(6):2519-2527 (2008) https://doi.org/10.1118/1.2903440
  4. Cho CB, Park HG, Joo WI, Chough CK, Lee KJ, Rha HK: Stereotactic Radiosurgery with the Cyberknife for Pituitary Adenomas. J Korean Neurosergery Soc 45:157-163 (2009) https://doi.org/10.3340/jkns.2009.45.3.157
  5. Das IJ, Ding GX, Ahnesjo A: Small field: Nonequilibrium radiation dosimetry. Med Phys 35(1):206-215 (2008) https://doi.org/10.1118/1.2815356
  6. Bjarngard BE, Tsai JS, Rice RK: Doses on the central axes of narrow 6-MV x-ray beams. Med Phys 17:794-799 (1990) https://doi.org/10.1118/1.596475
  7. Martens C, Wagter CDe, Neve W: The value of the pinpoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy. Phys Med Biol 45:2519-2530 (2000) https://doi.org/10.1088/0031-9155/45/9/306
  8. Saitoh H, Fujisaki T, Sakai R, Kunieda E: Dose distribution of narrow beam irradiation for small lung tumor. Int J Rad Oncol Biol Phys 53:1380-1387 (2002) https://doi.org/10.1016/S0360-3016(02)02893-6
  9. Westermark M, Arndt J, Nilsson B, Brahme A: Comparative dosimetry in narrow high-energy beams. Phys Med Biol 45:685-702 (2000) https://doi.org/10.1088/0031-9155/45/3/308
  10. Sankar A, Ayyangar KM, Nehru M, et al: Comparison of Kodak EDR2 and Gafchromic EBT Film for Intensity-modulated Radiation Therapy Dose Distribution Verification. Medical Dosimetry 31(4):273-282 (2006) https://doi.org/10.1016/j.meddos.2006.06.001
  11. Sankar A, Goplakrishna Kurup PG, Murali V, Ayyangar KM, Mothilal Nehru R, Velmurugan J: Evaluation of gafchromic EBT film for intensity modulated radiation therapy dose distribution verification. Med Phy 31(2):78-82 (2006) https://doi.org/10.4103/0971-6203.26693
  12. Jeong Hae Sun, Han Youngyih, Kum O Yeon, Kim Chan Hyeong: Development of a Multi-layer Solid Phantom for Intensity-Modulated Radiation Therapy. Transactions of the Korean Nuclear Society Autumn Meeting. 2008, PyeongChang, pp. 605-606
  13. Almond PR, Biggs PJ, Coursey BM, et al: AAPM's TG- 51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26(9):1847-1870 (1999) https://doi.org/10.1118/1.598691
  14. Seuntfens J, Olivares M, Evans M, Podgorsak E: Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols. Med Phys 32(9): 2945-2953 (2005) https://doi.org/10.1118/1.2012807
  15. Garcia-Vicente F, Delgado JM, Peraza C: Experimental determination of the convolution kernel for the study of the spatial response of a detector. Med Phys 25(2):341-347 (1998)
  16. Garcia-Vicente F, Delgado JM, Rodriguez C: Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel. Phys Med Biol 45:645-650 (2000) https://doi.org/10.1088/0031-9155/45/3/306
  17. Laub WU, Wong T: The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 30(3):341-347 (2003) https://doi.org/10.1118/1.1544678
  18. Jeong Hae Sun, Han Youngyih, Kum Oyeon, Kim Chan Hyeong: New Pixel-based Algorithm to Correct Non-uniform Response of Radiochromic Film Scanner. Transactions of the Korean Nuclear Society Autumn Meeting. 2009, Jeju, pp. 871-872
  19. Wilcox E, Daskalov G, Nedialkova L: Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PROTM film scanners for use in IMRT dosimetry using Gafchromic and radiographic film. Med. Phys. 34(1):41-48 (2006) https://doi.org/10.1118/1.2402584
  20. Battum LJ, Hoffmans D, Piersma H, Heukelom S: Accurrate dosimetry with GafchromicTM EBT film of a 6 MV photon beam in water: What level is achievable? Med Phys 35(2):704-716 (2008) https://doi.org/10.1118/1.2828196
  21. Francescon P, Cora S, Cavedon C: Total scatter factors of small beams: A multidetector and Monte Carlo study. Med Phys 35(2):504-513 (2008) https://doi.org/10.1118/1.2828195
  22. Wilcox EE, Daskalov GM: Evaluation of GAFCHROMIC${\circledR}$ EBT film for CyberKnife dosimetry. Med Phys 34(6):1967-1974 (2007) https://doi.org/10.1118/1.2734384
  23. Araki F: Monte Carlo study of a Cyberknife stereotactic radiosurgery system. Med Phys 33(8):2955-2963 (2006) https://doi.org/10.1118/1.2219774
  24. Fuss M, Sturtewagen E, Wagter CD, Georg D: Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol 52:4211-4225 (2007) https://doi.org/10.1088/0031-9155/52/14/013