최근 여러 논문에서 실 데이터 종속을 제거하기 위하여 결과 값 예상 기법을 제안하였다. 결과 값 예상 기법 중 혼합형 결과 값 예측기는 다양한 패턴을 갖는 명령어를 모두 예측함으로써 높은 예상 정확도를 얻을 수 있지만 하나의 명령어가 여러 개의 예측기 테이블에 중복 저장되어 높은 하드웨어 비용을 요구한다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위하여 프로파일링으로 얻어진 정적 분류 정보를 사용하여, 명령어률 예상 정확도가 높은 예측기에만 할당하여 예상 테이블 크기를 감소 시켰다. 또한 동적으로 적절한 예측기를 선택하도록 함으로써 예상 정확도를 더욱 향상 시켰다. 본 논문에서는 SPECint95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 정적-동적 분류 정보를 모두 사용하였을 경우 87.9%, VHT 크기를 4K로 축소한 경우 87.5%로 비슷한 예상정확도를 얻으면서 예상 테이블의 크기는 50%로 감소하였다. 또한 실행 패턴의 유형 비율에 따라 각 예측기의 VHT를 구성한 경우 예상 테이블 크기를 25%로 줄일 수 있었다.
데이터 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 놓은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(Stale) 데이터로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
슈퍼스칼라 프로세서는 성능향상을 위해 명령어 반입폭과 이슈율을 증가시키고 있다. 데이터 종속성은 ILP(Instruction-Level Parallelism)를 향상시키는데 주요 장애요소가 되고 있으며, 최근 여러 논문에서 데이터 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 메커니즘이 연구되었다. 그러나 이러한 예측기들은 예상한 명령어의 실제 결과값으로 예상 테이블을 갱신하기 전에 그 명령어를 다시 예상할 때 부적절(stale)한 데이터를 사용함으로써 예상 실패율이 증가하여 프로세서의 성능을 감소시킨다. 본 논문에서는 부적절 데이터 사용을 줄여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 제안된 하이브리드 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절 데이터로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 16-이슈폭 슈퍼스칼라 프로세서에서 SPECint95 벤치마크 프로그램에 대해 모험적 갱신을 사용함으로써 모험적 갱신을 사용하지 않은 경우의 평균 예상 정확도 59%에 비해 평균 예상 정확도가 72%에 비해 평균 예상 정확도가 72%로 크게 향상되었다.
본 논문에서는 대상지역에 대한 영상을 다양한 가중치의 조합의 경우를 고려하여 객체 단위로 분할하게 되며 분할된 객체에 대하여 상호관계를 분석하여 수치적으로 표현하였다. 또한 최종적인 객체 기반영상분류에서 높은 정확도를 확보할 수 있는 가중치의 조합을 산정하였다. 연구에 사용된 영상은 Landsat-7/ETM 영상으로 대상 지역의 면적은 $11{\times}14$ Km이며 밴드 2, 3, 4의 조합을 사용하였다. 객체 간 계산은 Moran's I와 객체 내부 분산(Intrasegment Variance)을 이용하였다. 대상지역에 대하여 총 75개의 가중치 조합을 사용하여 75개의 객체 분할 영상을 생성하였다. 객체 분할 영상 중에 최종적인 영상 분류 시 높은 정확도가 예상되는 가중치 조합, 중간 정도 정확도가 예상되는 가중치 조합 그리고 낮은 정도 정확도가 예상되는 가중치 조합을 7개 선택하여 최종적인 객체기반 영상분류를 시행하고 그 정확도를 비교하였다. 정확도의 비교 결과, 가장 높은 정확도가 예상되는 가중치 조합의 객체 분할 영상의 경우 객체 기반 영상 분류 시 85% 이상의 정확도를 나타내었으며 반대로 낮은 경우는 분류 시 50% 정도의 분류 정확도를 나타내었다.
ILP 프로세서는 고성능을 유지하기 위해 정확한 분기예상 방법을 요구한다. Two-Level 분기예상 방법은 높은 분기예상 정확성을 갖는 것으로 알려져 있다. 그러나, 한 분기 명령이 다른 분기 명령에 의해 갱신된 PHT 엔트리를 사용할 때 간섭이 발생하며, 간섭 중 부정적 간섭은 잘못된 예상(misprediction)을 유발하여 성능에 부정적 영향을 주게 된다. Agree분기예상 방법에서는 BTB에 bias 비트를 추가하여 부정적 간섭을 긍정적 간섭으로 변환하여 예상 정확도를 높였으나, bios 비트를 잘못 설정하는 경우에는 오히려 부정적 간섭이 증가하게 된다. 본 논문에서는 이러한 부정적 간섭을 감소시키는 새로운 동적 분기예상 방법을 제안한다. 제안한 분기예상 방법은 수행시간에 bias 비트를 동적으로 변경시키기 위해 BTB의 엔트리에 hit 비트를 추가하였다. 그 결과 부정적 간섭을 효과적으로 감소시켜 예상 정확도를 향상시켰다. 제안된 방법의 효율성을 보여주기 위해, SPEC92int 벤치마크를 사용하여 성능을 평가한 결과, 제안된 방법이 기존의 방법보다 성능이 우수함을 확인하였다.
데이타 종속성은 명령어 수준 병렬성을 향상시키는데 중요한 장애요소가 되고 있으며, 최근 여러 논문에서 데이타 종속을 제거하기 위하여 결과 값을 예상하는 방법이 연구되고 있다. 혼합형 결과 값 예측기는 여러 예측기의 장점을 이용하여 높은 예상 정확도를 얻을 수 있지만, 동일한 명령어가 여러 개의 예측기 테이블에 중복 엔트리를 갖게되어 높은 하드웨어의 비용을 필요로 한다는 단점이 있다. 본 논문에서는 정적 및 동적 분류 정보를 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 결과 값 예측기를 제안한다. 제안된 예측기는 반입 단계 동안 정적 분류 정보를 사용하여 적절한 예측기에 할당함으로써 테이블 크기를 효과적으로 감소시켰고 예상정확도를 향상시켰다. 또한 제안된 예측기는 동적 분류를 사용하여“Unknown”유형의 명령어에 가장 적절한 예측방법을 선택하도록 하여 예상 정확도를 더욱 향상시켰다. SimpleScaiar/PISA 툴셋과 SPECint95 벤치마크 프로그램에서 시뮬레이션 한 결과, 정적 분류 정보를 사용하였을 경우 평균 예상 정확도가 85.1%, 정적 및 동적 분류 정보를 모두 사용하였을 경우 87.6%의 평균 예상 정확도를 얻을 수 있었다.
본 연구에서는 대표적인 도시유출모형인 SWMM모형을 이용하여 기존의 침수예상지도가 고려하지 못했던 시간대별 침수예상지도를 작성하고 모형의 정확도 향상을 위해 연계모듈인 GeoSWMM을 개발하였다. GeosWMM은 GIS와 SWMM의 데이터 연계모듈로, 하수관망 GIS 네트워크 데이터로부터 SWMM 프로젝트 파일을 직접 생성할 수 있다. GeoSWMM을 이용하여 연구 사례지역인 서울특별시 서초구의 서초2동의 SWMM모형을 구축하였다. 실제 침수가 발생하였던 2010년 9월 21일의 시간당 실제 강우량 자료를 바탕으로 시나리오를 작성하여 홍수모의를 수행하였다. 홍수모의 결과 오후 2시를 기점으로 하수시스템의 통수능력 부족으로 인해 유출이 발생하는 것으로 나타났다. 이 결과를 바탕으로 시간대별 침수예상지도를 작성하였으며 2010년 침수흔적도를 기준으로 정확도 평가를 실시하였다. 평가 결과 침수예상지도가 침수흔적도와 약 66% 정도 일치하였다. 본 연구에서 개발한 GeoSWMM을 이용하면 SWMM의 입력 하수관망 데이터를 쉽게 생성할 수 있을 것이다. 또한 폭우 시 시간대별 침수예상지도 작성을 통해 도심지역에 대한 보다 효율적인 방재계획 수립이 가능할 것이다.
해외로 이동하고 있는 컨테이너 화물의 실시간 위치를 확인하고 기상정보 및 국제 이슈 등을 고려하여 도착 예상 시간을 계산해 화물의 도착 예정시간을 실시간으로 확인할 수 있는 서비스이다. 그동안 선박 추적 시스템은 해외 서비스에 의존해왔으며, 선사에서 자체적으로 제공하는 정보는 정확도가 40%에 미치는 한계가 존재했다. 이러한 문제점을 보완하여, 해당 서비스를 통해 빅데이터 기반의 분석과 향후 프로젝트 운영을 통해 축적될 시스템 상의 데이터와 현장의 데이터를 취합하여 높은 정확도를 이룰 수 있을 것으로 예상한다. 이를 통해 수출 기업들은 안전재고를 감축할 수 있게 되어 보관 관련 물류비용을 절감할 수 있게 될 것이다. 또한 보다 정확한 제조 일정을 수립할 수 있게 되어 과잉 생산을 방지할 수 있음을 기대해볼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.