Proceedings of the Korea Air Pollution Research Association Conference
/
2003.11a
/
pp.445-446
/
2003
대기오염물질은 배출되면 인위적으로 제거하는 과정이 용이하지 않을 뿐만 아니라 인체, 자연생태계 및 재산상에 다방면으로 피해를 주는 특성을 가지고 있다. 그중에서도 호흡성 먼지 또는 미세먼지라고 부르고 있는 PM-10은 대기 중 체류시간이 길며 인체에 대한 위해도를 갖고 있으나 최선의 대처 방법은 외출을 삼가하는 등의 미세먼지에 대한 노출을 사전에 방지 하는 방법밖에 없는 것으로 알려져 있다. 따라서 미세먼지에 대한 노출을 사전에 막고 이에 대한 대처를 위하여 미세먼지농도의 예보 및 경보 시스템 체제를 가동해야 할 필요성이 대두되고 있다. (중략)
Journal of the Korean Institute of Intelligent Systems
/
v.27
no.1
/
pp.79-87
/
2017
The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.356-356
/
2017
최근 국토교통부 홍수통제소에서는 가뭄대응을 위해 1, 3개월 갈수예보를 시범적으로 운영하고 있다. 국가재난 위기경보단계(관심, 주의, 경계, 심각)에 따라 분류된 기준유량과 예측유량의 비교를 통해 갈수상황을 판단하며, 그 중 기준유량은 일본의 정상유량 산정 기법에 의해 계산된다. 그러나 우기 건기에 따라 상이한 유입량 및 물 사용량이 정상유량 산정에 고려되지 않았고, 각 위기단계별 물 부족상황이 재현되지 못하였다. 또한, 하천유량 부족은 가뭄과 관계가 밀접함에도 불구하고, 가뭄상황과의 연계분석이 이뤄지지 않았다. 본 연구에서는 갈수빈도와 정상유량산정 모델을 이용하여 기준유량을 재설정하고 가뭄상황을 분석하였다. 대상유역은 영산강유역으로 선정하였고, 보고된 하천수사용허가량, 댐 용수 공급량 및 10년 이상 장기간 관측된 관측소별 일 유량자료를 활용하였다. 일 관측유량을 7일 이동평균으로 변환한 후, 유황분석을 통해 $Q_{90}$을 산정하였으며, 빈도별 $Q_{90}$을 계산하였다. 정상유량 산정 모델에서 입력 자료(자연유량, 댐 공급량 및 하천수 허가량)에 가중치를 두어 양을 조절하고 각 빈도에 맞는 관개기 및 비관개기 기준유량을 산정 하였다. 가뭄지수로는 국내 활용성이 높은 Standardized Precipitaion Index (SPI) 및 Standardized Runoff Index (SRI)를 선정하였고, 이를 지속기간 1, 3, 6, 12개월에 따라 일별로 계산하였다. 7일 평균 관측유량이 기준유량 이하일 때, 이시점을 전 후로 가뭄지수의 시공간적 특성과 가뭄의 지속기간 및 심도를 분석하여 가뭄상황을 제시하였다. 본 연구의 결과는 갈수예보 시 하천유량 부족에 따른 물수지 및 가뭄상황에 대한 직관적인 판단과 갈수기 효율적인 하천수 조정 협의에 기여할 것으로 본다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.1
/
pp.8-14
/
2020
The human impact of particulate matter are revealed and demand for improved forecast accuracy is increasing. Recently, efforts is made to improve the accuracy of PM10 predictions by using machine learning, but prediction performance is decreasing due to the particulate matter data with a large rate of low concentration occurrence. In this paper, separation prediction model by concentration is proposed to improve the accuracy of PM10 particulate matter forecast. The low and high concentration prediction model was designed using the weather and air pollution factors in Cheonan, and the performance comparison with the prediction models was performed. As a result of experiments with RMSE, MAPE, correlation coefficient, and AQI accuracy, it was confirmed that the predictive performance was improved, and that 20.62% of the AQI high-concentration prediction performance was improved.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.271-277
/
2017
As a result of rapid industrialization, air pollutants are seriously threatening the health of the people, the forecast is becoming more and more important. In forecasting air quality, it is very important to create a reliable initial field because the initial field input to the air quality forecasting model affects the accuracy of the forecast. There are several methods for enhancing the initial field input. One of the necessary techniques is data assimilation. The number of operations and the time required for such data assimilation is exponentially increased as the forecasting area is widened and the number of observation sites increases. Therefore, as the forecast size increases, it is difficult to apply the existing sequential processing method to a field requiring fast processing speed. In this paper, we propose a method that can process Cresman's method, which is one of the data assimilation techniques, in real time using CUDA. As a result, the proposed parallel processing method using CUDA improved at least 35 times faster than the conventional sequential method and other parallel processing methods.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.40-40
/
2017
최근 2014년 마른장마의 영향으로 중부 지방에 가뭄이 발생하였으며, 장마철 강수부족은 2015년까지 영향을 미친바 있다. 이로 인해 소양강 댐은 역대 최저수위를 기록하였으며, 일부 지역에서는 제한급수, 농업용수 부족 등의 피해가 발생하였다. 일반적으로 가뭄은 발생순서에 따라 기상학적, 농업적, 수문학적 가뭄 등으로 분류하고 있다 (Wilhite and Grantz, 1985). 기상학적 가뭄은 농업 및 수문학적 가뭄에 영향을 미치는 가뭄의 시작 단계를 의미하며, 가뭄을 판단하는데 있어 중요한 요소라 할 수 있다. 기상학적 가뭄을 정량적으로 판단하기 위해 SPI, PDSI, PN 등이 활용되고 있으며, 특히 강수량 기반의 SPI는 계산과정이 쉽고, 다양한 지속시간(3, 6, 9, 12개월 등)에 따라 가뭄을 객관적으로 판단할 수 있어 가장 활발하게 이용되고 있다(Mckee et al., 1993). 최근 기상청은 대기와 해양-해빙 모델을 접합한 GloSea5의 장기예보자료를 활용하여 월 내지 계절 가뭄전망을 위한 기상학적 가뭄지수를 현업에 활용하고 있다. 다만 국내에서는 주로 단기가뭄(1~3개월)이 빈번하게 발생함에 따라 짧은 예보선행시간을 갖는 가뭄전망에 대한 평가에 집중되어 왔다. 2014, 15년에는 이례적으로 2년 연속 가뭄이 지속된바 있으며, 장기가뭄(3개월 이상)에 대한 전망정보의 필요성이 증가하고 있다. 본 연구에서는 장기예보자료 기반의 기상학적 가뭄전망정보를 산정하고, 2015년 가뭄을 대상으로 활용성을 평가하였다. 이를 위해 ASOS 59개 지점의 관측강수량, GloSea5의 미래예측(Foreacst) 및 과거재현(Hindcast) 자료를 활용하였으며, 다양한 지속시간(3, 6, 9, 12개월)에 대한 SPI를 산정하였다. 또한 예보선행시간(1~6개월)에 따른 SPI와 관측자료 기반의 SPI 간의 통계적 분석(상관계수, 평균제곱근오차)을 수행하여 전망정보의 정확도를 평가하였다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.39-39
/
2021
기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.
Kim Seon Young;Lee Byungdoo;Lee Si Young;Chung Joosang
Korean Journal of Agricultural and Forest Meteorology
/
v.7
no.4
/
pp.235-239
/
2005
An accurate fire danger rating model can contribute to effective forest fire prevention activities. This study evaluates the national forest fire danger rating index based on forest fire statistics data from 1999 to 2002. The number of fires was related to the forest fire danger rating index $(R^2=0.67)$, and no correlation was found with burned areas. A one-way ANOVA test between forest fire danger rating levels and forest fire statistics data indicated that a difference in the number of fires was found among 'danger', 'precaution' and 'none' levels, but 'precaution' and 'none' levels could not be delineated. In the case of a burned area, no difference was found among the three levels.
An increase in heavy rainfall and floods have been observed over South Korea due to recent abnormal weather. In this perspective, the high-resolution weather forecasts have been widely used to facilitate flood management. However, these models are known to be biased due to initial conditions and topographical conditions in the process of model building. Theretofore, a bias correction scheme is largely applied for the practical use of the prediction to flood management. This study introduces a new mean field bias correction (MFBC) approach for the high-resolution numerical rainfall products, which is based on a Bayesian Kriging model to combine an interpolation technique and MFBC approach for spatial representation of the error. The results showed that the proposed method can reliably estimate the bias correction factor over ungauged area with an improvement in the reduction of errors. Moreover, it can be seen that the bias corrected rainfall forecasts could be used up to 72 hours ahead with a relatively high accuracy.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1181-1185
/
2009
Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.