• Title/Summary/Keyword: 예보모델

Search Result 334, Processing Time 0.029 seconds

Development of a Real-time Air-quality Forecasting System Using the Statistical Model (PM-10) (통계모델을 이용한 실시간 오염도 예보 시스템 개발 (PM-10))

  • 구윤서;권희용;윤희영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.445-446
    • /
    • 2003
  • 대기오염물질은 배출되면 인위적으로 제거하는 과정이 용이하지 않을 뿐만 아니라 인체, 자연생태계 및 재산상에 다방면으로 피해를 주는 특성을 가지고 있다. 그중에서도 호흡성 먼지 또는 미세먼지라고 부르고 있는 PM-10은 대기 중 체류시간이 길며 인체에 대한 위해도를 갖고 있으나 최선의 대처 방법은 외출을 삼가하는 등의 미세먼지에 대한 노출을 사전에 방지 하는 방법밖에 없는 것으로 알려져 있다. 따라서 미세먼지에 대한 노출을 사전에 막고 이에 대한 대처를 위하여 미세먼지농도의 예보 및 경보 시스템 체제를 가동해야 할 필요성이 대두되고 있다. (중략)

  • PDF

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.

Drought Analysis Using the Low Flow Frequency and Computation Model of Maintenance Flow (갈수빈도와 정상유량산정 모델을 활용한 가뭄상황 분석)

  • Son, Kyung-Hwan;Oh, Sung-Ryul;Choi, Kyu-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.356-356
    • /
    • 2017
  • 최근 국토교통부 홍수통제소에서는 가뭄대응을 위해 1, 3개월 갈수예보를 시범적으로 운영하고 있다. 국가재난 위기경보단계(관심, 주의, 경계, 심각)에 따라 분류된 기준유량과 예측유량의 비교를 통해 갈수상황을 판단하며, 그 중 기준유량은 일본의 정상유량 산정 기법에 의해 계산된다. 그러나 우기 건기에 따라 상이한 유입량 및 물 사용량이 정상유량 산정에 고려되지 않았고, 각 위기단계별 물 부족상황이 재현되지 못하였다. 또한, 하천유량 부족은 가뭄과 관계가 밀접함에도 불구하고, 가뭄상황과의 연계분석이 이뤄지지 않았다. 본 연구에서는 갈수빈도와 정상유량산정 모델을 이용하여 기준유량을 재설정하고 가뭄상황을 분석하였다. 대상유역은 영산강유역으로 선정하였고, 보고된 하천수사용허가량, 댐 용수 공급량 및 10년 이상 장기간 관측된 관측소별 일 유량자료를 활용하였다. 일 관측유량을 7일 이동평균으로 변환한 후, 유황분석을 통해 $Q_{90}$을 산정하였으며, 빈도별 $Q_{90}$을 계산하였다. 정상유량 산정 모델에서 입력 자료(자연유량, 댐 공급량 및 하천수 허가량)에 가중치를 두어 양을 조절하고 각 빈도에 맞는 관개기 및 비관개기 기준유량을 산정 하였다. 가뭄지수로는 국내 활용성이 높은 Standardized Precipitaion Index (SPI) 및 Standardized Runoff Index (SRI)를 선정하였고, 이를 지속기간 1, 3, 6, 12개월에 따라 일별로 계산하였다. 7일 평균 관측유량이 기준유량 이하일 때, 이시점을 전 후로 가뭄지수의 시공간적 특성과 가뭄의 지속기간 및 심도를 분석하여 가뭄상황을 제시하였다. 본 연구의 결과는 갈수예보 시 하천유량 부족에 따른 물수지 및 가뭄상황에 대한 직관적인 판단과 갈수기 효율적인 하천수 조정 협의에 기여할 것으로 본다.

  • PDF

Separation Prediction Model by Concentration based on Deep Neural Network for Improving PM10 Forecast Accuracy (PM10 예보 정확도 향상을 위한 Deep Neural Network 기반 농도별 분리 예측 모델)

  • Cho, Kyoung-woo;Jung, Yong-jin;Lee, Jong-sung;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The human impact of particulate matter are revealed and demand for improved forecast accuracy is increasing. Recently, efforts is made to improve the accuracy of PM10 predictions by using machine learning, but prediction performance is decreasing due to the particulate matter data with a large rate of low concentration occurrence. In this paper, separation prediction model by concentration is proposed to improve the accuracy of PM10 particulate matter forecast. The low and high concentration prediction model was designed using the weather and air pollution factors in Cheonan, and the performance comparison with the prediction models was performed. As a result of experiments with RMSE, MAPE, correlation coefficient, and AQI accuracy, it was confirmed that the predictive performance was improved, and that 20.62% of the AQI high-concentration prediction performance was improved.

Data Assimilation of Real-time Air Quality Forecast using CUDA (CUDA를 이용한 실시간 대기질 예보 자료동화)

  • Bae, Hyo-Sik;Yu, Suk-Hyun;Kwon, Hee-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.271-277
    • /
    • 2017
  • As a result of rapid industrialization, air pollutants are seriously threatening the health of the people, the forecast is becoming more and more important. In forecasting air quality, it is very important to create a reliable initial field because the initial field input to the air quality forecasting model affects the accuracy of the forecast. There are several methods for enhancing the initial field input. One of the necessary techniques is data assimilation. The number of operations and the time required for such data assimilation is exponentially increased as the forecasting area is widened and the number of observation sites increases. Therefore, as the forecast size increases, it is difficult to apply the existing sequential processing method to a field requiring fast processing speed. In this paper, we propose a method that can process Cresman's method, which is one of the data assimilation techniques, in real time using CUDA. As a result, the proposed parallel processing method using CUDA improved at least 35 times faster than the conventional sequential method and other parallel processing methods.

Utilization assessment of meteorological drought outlook information based on long-term weather forecast data (장기예보자료 기반 기상학적 가뭄전망정보의 활용성 평가)

  • So, Jae-Min;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.40-40
    • /
    • 2017
  • 최근 2014년 마른장마의 영향으로 중부 지방에 가뭄이 발생하였으며, 장마철 강수부족은 2015년까지 영향을 미친바 있다. 이로 인해 소양강 댐은 역대 최저수위를 기록하였으며, 일부 지역에서는 제한급수, 농업용수 부족 등의 피해가 발생하였다. 일반적으로 가뭄은 발생순서에 따라 기상학적, 농업적, 수문학적 가뭄 등으로 분류하고 있다 (Wilhite and Grantz, 1985). 기상학적 가뭄은 농업 및 수문학적 가뭄에 영향을 미치는 가뭄의 시작 단계를 의미하며, 가뭄을 판단하는데 있어 중요한 요소라 할 수 있다. 기상학적 가뭄을 정량적으로 판단하기 위해 SPI, PDSI, PN 등이 활용되고 있으며, 특히 강수량 기반의 SPI는 계산과정이 쉽고, 다양한 지속시간(3, 6, 9, 12개월 등)에 따라 가뭄을 객관적으로 판단할 수 있어 가장 활발하게 이용되고 있다(Mckee et al., 1993). 최근 기상청은 대기와 해양-해빙 모델을 접합한 GloSea5의 장기예보자료를 활용하여 월 내지 계절 가뭄전망을 위한 기상학적 가뭄지수를 현업에 활용하고 있다. 다만 국내에서는 주로 단기가뭄(1~3개월)이 빈번하게 발생함에 따라 짧은 예보선행시간을 갖는 가뭄전망에 대한 평가에 집중되어 왔다. 2014, 15년에는 이례적으로 2년 연속 가뭄이 지속된바 있으며, 장기가뭄(3개월 이상)에 대한 전망정보의 필요성이 증가하고 있다. 본 연구에서는 장기예보자료 기반의 기상학적 가뭄전망정보를 산정하고, 2015년 가뭄을 대상으로 활용성을 평가하였다. 이를 위해 ASOS 59개 지점의 관측강수량, GloSea5의 미래예측(Foreacst) 및 과거재현(Hindcast) 자료를 활용하였으며, 다양한 지속시간(3, 6, 9, 12개월)에 대한 SPI를 산정하였다. 또한 예보선행시간(1~6개월)에 따른 SPI와 관측자료 기반의 SPI 간의 통계적 분석(상관계수, 평균제곱근오차)을 수행하여 전망정보의 정확도를 평가하였다.

  • PDF

Radar rainfall forecasting evaluation using consecutive advection characteristics of rainfall fields (강우장의 연속 이류특성을 활용한 레이더 강수량 예측성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.39-39
    • /
    • 2021
  • 기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.

  • PDF

Evaluation of the Forest Fire Danger Rating Index Based on National Forest Eire Statistics Data (산불통계자료를 이용한 산불위험지수 고찰)

  • Kim Seon Young;Lee Byungdoo;Lee Si Young;Chung Joosang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.235-239
    • /
    • 2005
  • An accurate fire danger rating model can contribute to effective forest fire prevention activities. This study evaluates the national forest fire danger rating index based on forest fire statistics data from 1999 to 2002. The number of fires was related to the forest fire danger rating index $(R^2=0.67)$, and no correlation was found with burned areas. A one-way ANOVA test between forest fire danger rating levels and forest fire statistics data indicated that a difference in the number of fires was found among 'danger', 'precaution' and 'none' levels, but 'precaution' and 'none' levels could not be delineated. In the case of a burned area, no difference was found among the three levels.

Development of bias correction scheme for high resolution precipitation forecast (고해상도 강수량 수치예보에 대한 편의 보정 기법 개발)

  • Uranchimeg, Sumiya;Kim, Ji-Sung;Kim, Kyu-Ho;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.575-584
    • /
    • 2018
  • An increase in heavy rainfall and floods have been observed over South Korea due to recent abnormal weather. In this perspective, the high-resolution weather forecasts have been widely used to facilitate flood management. However, these models are known to be biased due to initial conditions and topographical conditions in the process of model building. Theretofore, a bias correction scheme is largely applied for the practical use of the prediction to flood management. This study introduces a new mean field bias correction (MFBC) approach for the high-resolution numerical rainfall products, which is based on a Bayesian Kriging model to combine an interpolation technique and MFBC approach for spatial representation of the error. The results showed that the proposed method can reliably estimate the bias correction factor over ungauged area with an improvement in the reduction of errors. Moreover, it can be seen that the bias corrected rainfall forecasts could be used up to 72 hours ahead with a relatively high accuracy.

Monthly Precipitation Forecast Using Genetic Algorithm (ANFIS 모형을 이용한 월강수량 예측)

  • Shin, Ju-Young;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1181-1185
    • /
    • 2009
  • Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.

  • PDF