• 제목/요약/키워드: 영역 분할정도

검색결과 131건 처리시간 0.021초

Region-based Canopy Cover Mapping Using Airborne Lidar Data (항공 라이다 자료를 이용한 영역 기반 차폐율 지도 제작)

  • Kim, Yong-Min;Eo, Yang-Dam;Jeon, Min-Cheol;Kim, Hyung-Tae;Kim, Chang-Jae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제19권1호
    • /
    • pp.29-36
    • /
    • 2011
  • The main purpose of this paper is to make a map showing canopy cover by using airborne Lidar data based on region. Watershed algorithm was applied to elevation data to conduct segmentation, and then canopy cover was estimated through the regions extracted. In the process of transforming point data to raster, we solved the problems about overestimation and underestimation by using frequency method. Also, canopy cover map could be produced with various scales by differing level of segmentation and it provides more accurate and precise information than ones of ordinary public forest map.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제13권10호
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.

A Study of ATM filter for Resolving the Over Segmentation in Image Segmentation of Region-based method (영역기반 방법의 영상 분할에서 과분할 방지를 위한 Adaptive Trimmed Mean 필터에 관한 연구)

  • Lee, Wan-Bum
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제44권3호
    • /
    • pp.42-47
    • /
    • 2007
  • Video Segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes that adaptive trimmed mean filter for resolving the over segmentation of image. Simulation result, we confirm that proposed ATM filter improves the performance to remove noise and reduces damage for the clear degree of image in case of the noise ratio of 20% and over.

Contrast Enhancement Using a Density based Sub-histogram Equalization Technique (밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제46권1호
    • /
    • pp.10-21
    • /
    • 2009
  • In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes those regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrast in the images and the results are compared to the conventional approaches to show its superiority.

Rate-distortion based image segmentation using recursive merging (반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 전성철;임채환;김남철
    • Journal of Broadcast Engineering
    • /
    • 제4권1호
    • /
    • pp.44-58
    • /
    • 1999
  • In this paper, a rate-distortion based image segmentation algorithm is presented using a recursive merging with region adjacency graph (RAG). In the method, the dissimilarity between a pair of adjacent regions is represented as a Lagrangian cost function considered in rate-distortion sense. Lagrangian multiplier is estimated in each merging step, a pair of adjacent regions whose cost is minimal is searched and then the pair of regions are merged into a new region. The merging step is recursively performed until some termination criterion is reached. The proposed method thus is suitable for region-based coding or segmented-based coding. Experiment results for 256x256 Lena show that segmented-based coding using the proposed method yields PSNR improvement of about 2.5 - 3.5 dB. 0.8 -1.0 dB. 0.3 -0.6 dB over mean-difference-based method. distortion-based method, and JPEG, respectively.

  • PDF

An Index Structure based on Space Partitions and Adaptive Bit Allocations for Multi-Dimensional Data (다차원 데이타를 위한 공간 분할 및 적응적 비트 할당 기반 색인 구조)

  • Bok, Kyoung-Soo;Kim, Eun-Jae;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • 제32권5호
    • /
    • pp.509-525
    • /
    • 2005
  • In this paper, we propose the index structure based on a vector approximation for efficiently supporting the similarity search of multi-dimensional data. The proposed index structure splits a region with the space partition method and allocates to the split region dynamic bits according to the distribution of data. Therefore, the index structure splits a region to the unoverlapped regions and can reduce the depth of the tree by storing the much region information of child nodes in a internal node. Our index structure represents the child node more exactly and provide the efficient search by representing the region information of the child node relatively using the region information of the parent node. We show that our proposed index structure is better than the existing index structure in various experiments. Experimental results show that our proposed index structure achieves about $40\%$ performance improvements on search performance over the existing method.

Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System (객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법)

  • Yu Hong-Yeon;Hong Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • 제9권5호
    • /
    • pp.529-541
    • /
    • 2006
  • In this paper, we propose a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the selected objects are continuously separated from the un selected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable and efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on this result, we have developed objects based video editing system with several convenient editing functions.

  • PDF

Automatic Liver Segmentation Method on MR Images using Normalized Gradient Magnitude Image (MR 영상에서 정규화된 기울기 크기 영상을 이용한 자동 간 분할 기법)

  • Lee, Jeong-Jin;Kim, Kyoung-Won;Lee, Ho
    • Journal of Korea Multimedia Society
    • /
    • 제13권11호
    • /
    • pp.1698-1705
    • /
    • 2010
  • In this paper, we propose a fast liver segmentation method from magnetic resonance(MR) images. Our method efficiently divides a MR image into a set of discrete objects, and boundaries based on the normalized gradient magnitude information. Then, the objects belonging to the liver are detected by using 2D seeded region growing with seed points, which are extracted from the segmented liver region of the slice immediately above or below the current slice. Finally, rolling ball algorithm, and connected component analysis minimizes false positive error near the liver boundaries. Our method was validated by twenty data sets and the results were compared with the manually segmented result. The average volumetric overlap error was 5.2%, and average absolute volumetric measurement error was 1.9%. The average processing time for segmenting one data set was about three seconds. Our method could be used for computer-aided liver diagnosis, which requires a fast and accurate segmentation of liver.

Fault Localization Method by Utilizing Memory Update Information and Memory Partitioning based on Memory Map (메모리 맵 기반 메모리 영역 분할과 메모리 갱신 정보를 활용한 결함 후보 축소 기법)

  • Kim, Kwanhyo;Choi, Ki-Yong;Lee, Jung-Won
    • Journal of KIISE
    • /
    • 제43권9호
    • /
    • pp.998-1007
    • /
    • 2016
  • In recent years, the cost of automotive ECU (Electronic Control Unit) has accounted for more than 30% of total car production cost. However, the complexity of testing and debugging an automotive ECU is increasing because automobile manufacturers outsource automotive ECU production. Therefore, a large amount of cost and time are spent to localize faults during testing an automotive ECU. In order to solve these problems, we propose a fault localization method in memory for developers who run the integration testing of automotive ECU. In this method, memory is partitioned by utilizing memory map, and fault-suspiciousness for each partition is calculated by utilizing memory update information. Then, the fault-suspicious region for partitions is decided based on calculated fault-suspiciousness. The preliminary result indicated that the proposed method reduced the fault-suspicious region to 15.01(%) of memory size.

Evaluation of The Image Segmentation Method for DEM Generation of Satellite Imagery (위성영상의 DEM 생성을 위한 영상분할 방법의 적합성 평가)

  • 이효성;송정헌;김용일;안기원
    • Korean Journal of Remote Sensing
    • /
    • 제19권2호
    • /
    • pp.149-157
    • /
    • 2003
  • In this study, for efficient replacement of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which Is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).