의료 영상에서 관심 있는 부위를 3차원으로 재구성 하여 보는 것은, 정확한 진단을 위해서 매우 중요하다. 이러한 3차원 재구성을 위해서는 관심 있는 영역의 분할이 필수적인 선행작업이다. 본 논문에서는 3차원적 정보를 이용한 영상 분할 방법으로 슬라이스 기반의 3차원 영역 확장법을 제안한다. 제안된 방법은 2차원 슬라이스 영상에서 영역 성장법에 의해 영역을 확장시키고, 그 이웃한 슬라이스들에 씨앗을 전달하여 재귀적으로 3차원 영역을 확장하여 영상을 분할한다. 이때, 이웃한 슬라이스 간의 영역의 크기를 이용하여 새나감을 방지한다. 제안된 방법을 튜브 형태의 기관의 분할에 적용한 결과, 새나감 없이 뽀족한 가지들까지도 성공적으로 분할 했으며, 튜브의 중심 축이 고차원 곡선인 경우에도 성공적으로 분할했다.
In this paper, we propose an adaptive pavement region detection method that is robust to changes of structural patterns in a natural scene. In order to segment out a pavement reliably, we propose two step approaches. We first detect the borderline of a pavement and separate out the candidate region of a pavement using VRays. The VRays are straight lines starting from a vanishing point. They split out the candidate region that includes the pavement in a radial shape. Once the candidate region is found, we next employ the adaptive multi-seed region growing(A-MSRG) method within the candidate region. The A-MSRG method segments out the pavement region very accurately by growing seed regions. The number of seed regions are to be determined adaptively depending on the encountered situation. We prove the effectiveness of our approach by comparing its performance against the performances of seed region growing(SRG) approach and multi-seed region growing(MSRG) approach in terms of the false detection rate.
In this paper, we propose a smoke detection method using region growing method in outdoor video sequences. Our proposed method is composed of three steps; the initial change area detection step, the boundary finding and expanding step, and the smoke classification step. In the first step, we use a background subtraction to detect changed areas in the current input frame against the background image. In difference images of the background subtraction, we calculate a binary image using a threshold value and apply morphology operations to the binary image to remove noises. In the second step, we find boundaries of the changed areas using labeling algorithm and expand the boundaries to their neighbors using the region growing algorithm. In the final step, ellipses of the boundaries are estimated using moments. We classify whether the boundary is smoke by using the temporal information.
Journal of Advanced Marine Engineering and Technology
/
v.40
no.1
/
pp.75-80
/
2016
Numerical modeling based on the finite difference method has been widely used with improved computer technology. However, high-capacity computing resources are required for this technique. To overcome this limitation, we propose an algorithm the employs a logarithmic grid in conjunction with the expanding domain method. The proposed algorithm was verified through comparison with numerical results obtained with a conventional method. The results confirmed that our algorithm can improve computational efficiency.
Proceedings of the Korea Electromagnetic Engineering Society Conference
/
2000.11a
/
pp.130-134
/
2000
본 논문에서는 확장된 시간영역 유한차분법(Extended finite difference time domain method)을 이용하여 마이크로파 중폭기를 해석하였다. 회로에 포함되어 있는 능동 소자는 고주파 등가 회로를 이용하여 모델링 하였다. 고주파 등가 회로를 통하여 계산한 게어트와 드레인의 전류를 FDTD의 전계 계산식에 첨가향으로개 마이크로스트립 회로의 전자기파와 능동 소자와의 상호 작용을 특성 지었다. 해석 결과는 주파수 영역 회로 해석법(Frequency-domain circuit analysis)을 이용한 결과와의 비교를 통하여 정확성을 입증했다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.5
/
pp.111-116
/
2004
It is essential to know the information about the prior model for wavelet coefficients, the probability distribution of noise, and the variance of wavelet coefficients for noise reduction using Bayesian estimation in wavelet domain. In general denoising methods, the signal variance is estimated from the proper prior model for wavelet coefficients. In this paper, we propose a variable window size decision algorithm to estimate signal variance according to image region. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.
Journal of Korean Society for Geospatial Information Science
/
v.19
no.3
/
pp.41-47
/
2011
Processing of the raw LiDAR data requires the high-end processor, because data form is a vector. In contrast, if LiDAR data is converted into a regular grid pattern by filltering, that has advantage of being in a low-cost equipment, because of the simple structure and faster processing speed. Especially, by using grid data classification, such as Quadtree, some of trees and cars are removed, so it has advantage of modeling. Therefore, this study presents the algorithm for automatic extraction of ground points using Quadtree and refion growing method from LiDAR data. In addition, Error analysis was performed based on the 1:5000 digital map of sample area to analyze the classification of ground points. In a result, the ground classification accuracy is over 98%. So it has the advantage of extracting the ground points. In addition, non-ground points, such as cars and tree, are effectively removed as using Quadtree and region growing method.
의료 영상에서 관심 있는 부위를 3차원으로 재구성하여 보는 것은, 정확한 진단을 위해서 매우 중요하다. 이러한 3차원 재구성을 위해서는 관심 있는 영역의 분할이 필수적인 선행작업이다. 본 논문에서는 관도계 기관의 분할을 위해서 슬라이스 영상의 정보를 이용한 3차원 영역 성장법을 제안한다. 제안된 방법은 2차원 슬라이스 영상에서 영역 성장법에 의해 영역을 확장시키고, 그 이웃한 슬라이스들에 씨앗점을 전달하여 재귀적으로 3차원 체적을 확장하여 영상을 분할한다. 이때, 이웃한 슬라이스간의 영역의 크기의 제약을 이용하여 새나감을 방지한다. 제안된 방법을 기관지의 분할에 적용한 결과, 새나감 없이 뾰족한 가지들까지도 성공적으로 분할했으며, 튜브의 중심 축이 고차원 곡선인 경우에도 성공적으로 분할했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.76-79
/
2019
합성곱 신경망의 성능이 증가하면서 다양한 영상 처리 문제를 해결하기 위해 합성곱 신경망을 적용한 시도들이 증가하고 있다. 고해상도 복원 문제도 그 중 하나였으며, 보다 높은 성능을 얻기 위해 주로 신경망의 깊이를 깊게 하는 시도들이 있었다. 본 논문에서는 고해상도 복원 작업을 위한 합성곱 신경망의 성능 향상을 위해 깊이를 증가시키는 접근법이 아닌 수용영역을 확장시키는 접근법을 시도하였다. 논문에서 제시한 모델은 신경망 내부에 두 개의 브랜치를 두어, 하나의 브랜치는 Dilated Convolution 을 이용해 수용영역을 확장하는데 사용되며, 다른 하나는 이 브랜치를 통해 나온 feature 를 가공하는데 사용된다. 기본 모델은 EDSR 을 사용하였으며, 최종적으로 4.79M 의 파라미터로 평균 32.46dB 의 PSNR 을 보여주었다. 하지만 모델의 구조가 복잡하여 깊이를 늘이는 접근법을 적용하기 어렵다는 한계점이 있다.
위성영상 기술의 발달과 고해상도 위성영상의 해상도 규제가 완화됨에 따라 건물의 높이 정보를 획득하는데 있어 고해상도 위성영상의 그림자 정보를 이용하는 연구들이 활발히 수행되어지고 있다. 그림자 정보를 이용하여 건물 높이 정보를 획득하는 연구의 정확도를 높이기 위해서는 정확한 건물의 그림자 탐지가 선행되어야 한다. 따라서 본 논문에서는 단영상을 이용한 그림자 탐지기법인 임계값법(Thresholding), 영상분류법, 영역확장법(Region Growing)을 건물의 그림자 탐지에 적용하여 각 기법의 장단점과 정확도를 평가하였다. 영상에서 수동으로 건물의 그림자를 디지타이징한 참조 자료와 기법들을 적용하여 탐지한 결과 영상을 시각적으로 비교하였고, 오차행렬(Confusion Matrix)을 이용한 전체정확도(Accuracy), F-measure, AOR(Area Overlap Ratio)을 이용하여 정량적인 정확도평가를 수행하였다. 실험결과 영역확장법을 적용한 경우 시각적 정량적으로 가장 높은 정확도를 보였으며, 영상분류법을 적용한 경우 시각적으로는 임계값을 적용한 경우보다 좋은 결과를 보였으나 정량적으로는 가장 낮은 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.