• 제목/요약/키워드: 영역적 형상

Search Result 826, Processing Time 0.028 seconds

Numerical Study on the Internal Flow in the Cyclone Vacuum Cleaner (사이클론 청소기 내부 유동에 관한 수치해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.283-289
    • /
    • 2014
  • General household vacuum cleaners consist of dust collector, pre filter, motor and exhaust filter, and the filtered clean air is discharged to the atmosphere. By using the CFD methods, we estimated the internal flow in two types of commercial cyclone vacuum cleaners to evaluate the dust collection performance. From the analysis, it was known that the number of revolution had higher values in cyclone cone region. CFD analysis in a specific showed non-uniform velocity distribution at outlet, which results in the deterioration of particle collection performance. In order to improve flow condition, the installation of baffle was proposed and the values of velocity RMS were estimated.

A study on the optimal design of automobile suspension system (자동차 懸架裝置의 최적설계에 관한 연구)

  • Kim, Ho-Ryong;Choi, Sub
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.437-443
    • /
    • 1987
  • An optimal design to improve the ride quality was performed with the time and frequency domain analysis based on both of deterministic and random road profiles. The objective function is established to minimize the absorbed power while the constraints are taken so as to satisfy the condition for the stability of vehicle. The result of the optimal design shows that the rms for the acceleration of a driver and his seat is within the critical values for the ride quality from ISO. The optimal values obtained show that the maximum absolute acceleration of the driver and his seat has significantly been reduced and the reference limits on the relative displacement have satisfied their feasibility. As the optimal value according to a specific speed is the results from the optimization process, a global optimum value should be determined to be the one which gives th minimum values of total sum of absorbed power with respect to various speed.

Evaluation of Performance of Expansive Material for Restoration of Underground Cavity and Stress Release Zone (지하공동 및 이완영역 복구를 위한 팽창성 재료의 성능 평가)

  • Lee, Kicheol;Choi, Byeong-Hyun;Bak, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.141-155
    • /
    • 2018
  • Recently, the number of ground subsidence resulting from underground cavity has been increased. Accordingly, the importance of restoration of stress release zone around the underground cavity has been emphasized. The stress release zone is composed of low density soils having extremely low stiffness and degree of compaction, which can lead to additional cavity expansion and collapse of overlying ground. Therefore, in this study, the suitability of restoration method of underground cavity using expansive material for reinforcement of stress release zone around the cavity is verified. The basic physical properties and expansion characteristics of the expansive material were examined. The experiment equipment capable simulating of stress release zone was developed and is used to investigate the effect of expanding material on stress release zone. The stress release zone was simulated using the spring in numerical analysis. The factors of the volume ratio of the underground cavity to the expansion material, the degree of stress relaxation, and the shape of the cavity were varied in numerical simulations, and the behavior of stress release zone was analyzed based on the numerical analysis results. Analysis variables are factors that affect each other. Also, filling of underground cavity and capacity of restoration of stress release zone were confirmed when the expansive material was inserted into underground cavity.

Isogeometric Shape Design Optimization of Power Flow Problems at High Frequencies (고주파수 파워흐름 문제의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • Using an isogeometric approach, a continuum-based shape design optimization method is developed for steady state power flow problems at high frequencies. In case the isogeometric method is employed to the shape design optimization, the NURBS basis functions used in CAD geometric modeling are directly utilized to embed the exact geometry into the computational framework so that the design parameterization for shape optimization is much easier than that in the finite element method and consequently provides the enhanced smoothness of design perturbations. Thus, exact geometric models can be used in both the response and the shape sensitivity analyses, where normal vector and curvature are continuous over the whole design space so that enhanced shape sensitivity can be expected. Through numerical examples, the developed isogeometric sensitivity is compared with finite difference one to provide excellent agreement. Also, it turns out that the proposed method works very well in the shape optimization problems.

Dynamic Analysis of Specimen Under Ultrasonic Fatigue Using Finite Element Method (초음파 피로시험시 시험편의 유한요소 동적 해석)

  • Myeong, No-Jun;Choi, Nak-Sam;Kwon, Hena
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.711-717
    • /
    • 2014
  • An accelerated ultrasonic fatigue test (UFT) was used for analyzing very high cycle fatigue (VHCF, $N_f$ > $10^7$) behaviors of a specimen with a test resonance of 20 kHz. Using the finite element method (FEM), the dynamic behaviors of the specimen was studied by calculating the stresses along its gauge portion, with displacement. The shape of gauge portion profile was assumed to be a hyperbolic according to the stress equation of the UFT. However, as the specimen used in the test had a circular arc profile, the FEM was used for studying the local stresses for two cases of the gauge profile. The results were compared with those obtain from the stress equation of the UFT. The dynamic behavior of the gauge portion could be understood for further comparison with the actual results.

Grid Convergence on Surface Pressure Distribution over the RAE-A Wing-Body Configuration (RAE-A 날개-동체 형상의 압력 분포에 대한 격자 수렴성 연구)

  • Kim, Ki Ro;Park, Soo Hyung;Sa, Jeong Hwan;Cho, Kum Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.226-232
    • /
    • 2017
  • Surface pressure distributions over the RAE-A wing-body configuration were investigated and the grid convergence along the streamwise, spanwise, and circumferential directions was numerically studied. Flow analysis in subsonic and transonic conditions was conducted using the $k-{\omega}$ Wilcox-Durbin+ turbulence model. Surface pressure distributions for subsonic flows were well matched, but those for transonic shocked flows showed a little discrepancy with the experimental data. A cubic spline extrapolation method was applied in order to investigate the grid convergence. This method presented that the grid resolution in the circumferential direction is the most important grid parameter. A refined grid system was made based on the grid convergence study and provided more accurate prediction, especially on the symmetric body surface of RAE-A configuration.

Analysis of Turbulent Velocity Fluctuations of Rectangular Shape of the Surface Roughness Change (직사각형 형상의 표면조도 변화에 의한 난류변동분 해석)

  • Oh, Dae-Kyun;Oh, Woo-Jun;Kim, Do-Jung;Lee, Gyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In physical engineering, the turbulent flow on the surface roughness is very important. With the welding, design and paint, the hull surface roughness at each stage in the various aspects are important factors to be considered. In this study, the hull surface roughness geometry that was generalized to the PIV was applied to the tank test. The roughness of the surface changed the distance of the interval. Experimental velocity is Re = $1.1{\times}10^4$, Re = $2.0{\times}10^4$ and Re = $2.9{\times}10^4$. The turbulent intensity at the time-average were examined The roughness coefficient occurred with increasing turbulence intensities was stronger. The turbulence intensity away from the roughness in the shape was zero. The variation of turbulence intensity at the experimental flow conditions change was not affected.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

Service Identification of Configuration and Data Management System for Weapon System R&D Processes Based on Service Oriented Architecture (서비스 지향 아키텍처에 기반한 무기체계 연구개발 형상/정보관리시스템의 서비스 식별)

  • Kim, Hyung-Jun;Lee, Bu-Kweon;Seo, Yeong-Geon
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.147-157
    • /
    • 2009
  • Configuration and data management system to support processes for the weapon system should support the concurrent engineering and collaborative activities for various documents, drawings, part informations and structural informations, etc. which are produced through R&D processes for a long time. This thesis attempts to identify major functions in the configuration and data management system to support processes for the weapon system R&D into services based on a service oriented architecture. In order to identify major services in the configuration and data management system to support processes for the weapon system R&D, a configuration and data management system to support processes for the weapon system R&D was proposed with a service oriented architecture with four layers including a service consumer layer, a business service layer, an application service layer and a application layer, and major services were identified for each layer. In order to identify major services in four layers, this thesis adopted a bottom-up approach to identify the necessary business services from a well-defined domain implementation system rather than a top-down identification method in general. This thesis tried to identify the essential services in implementing the configuration and data management system to support processes for the weapon system R&D as a system based on the service oriented architecture using such a bottom-up service identification method while limiting those services to the general PDM system aspects and the business areas of the configuration and data management system to support processes for the weapon system R&D.

  • PDF

Characteristics for Sludge Removal Nozzle in Steam Generator (증기 발생기 슬러지 제거용 노즐 특성 연구)

  • Lee Sam-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • Water-jet trajectory visualization and velocity deficits from a high pressurized steam-generator nozzles were experimentally observed. In order to find an optimal nozzle configuration. several parameters affecting plugging and erosion onto the steam generator tube were quantitatively analyzed. For the experiments, a high-pressurized pump (pressure in use: 200 kg/$\textrm{cm}^2$, 15 HP, 11 kW, output flow Q : 301/min) was utilized. Visualization, velocity distribution, and spray growth rate with different nozzle configurations have been mainly focused using a 2-D PDPA system. The results indicated that trajectories along the centerline regardless of their configurations has its potential core region. However, the phenomena from the peripheral part need to be meticulously considered. Accordingly, it is evident that quantitative velocity deficits at the outer region are outstanding due to the aerodynamical drag and entrainment.