• Title/Summary/Keyword: 영역기반 영상처리

Search Result 924, Processing Time 0.092 seconds

Face Detection based Real-time Eye Gaze Correction Method Using a Depth Camera (거리 카메라를 이용한 얼굴 검출 기반 실시간 시선 보정 방법)

  • Jo, Hoon;Ra, Moon-Soo;Kim, Whoi-Yul;Kim, Deuk-Hwa
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.151-154
    • /
    • 2012
  • 본 논문에서는 화상통신의 현실감을 증진시킬 수 있는 화자 간 시선 맞춤 시스템을 제안한다. 제안하는 방법은 Kinect 거리 카메라로부터 입력된 영상에서 화자의 얼굴 영역을 획득하여 화자의 시선이 카메라를 응시하도록 획득한 영역을 변환한 후에 원본 영상과 합성한다. Kinect 거리 카메라에서 획득한 얼굴 영역에는 다양한 형태의 잡음이 많아 미디언 필터와 모폴로지 연산을 통해 얼굴 영역의 잡음을 제거한다. 화자의 위치에 상관 없이 화자가 카메라를 응시하는 영상을 생성하기 위해서 Kinect 가 제공하는 거리 정보를 이용하여 시선 보정 각도와 회전 축을 획득한다. 시선이 보정된 얼굴 영역은 원본 영상에서 존재하지 않는 영역을 포함하고 있기 때문에, 원본 영상의 각 화소를 삼각형 메쉬로 구성한 후 해당 영역을 보간하여 최종적으로 시선이 보정된 영상을 생성한다. 제안하는 방법은 시선 맞춤 영상을 생성하는 데 필수적인 눈과 주변 얼굴 영역만 선택해서 변환하므로 영상의 왜곡이 적고 실시간 처리가 가능하다는 장점이 있다. 또한 카메라와 화자 사이의 거리 정보를 이용해 화자의 위치에 적응적인 시선 맞춤 영상을 생성할 수 있다. 실험을 통해 Intel i5 CPU 를 장착한 PC에서 $320{\times}240$ 크기의 영상을 사용할 경우 초당 약 35 프레임의 보정된 영상을 생성하여 제안하는 방법이 실시간 처리가 가능하다는 것을 확인하였다.

  • PDF

A Method for Object Extraction of SAR Image using Sub-Histogram Technique based on Feature Point (SAR 영상 내 객체 추출을 위한 특징점 기반 분할 히스토그램 기법)

  • Kim, Chang-il;Kim, Joon-ki;Paek, Seung-hwa
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1442-1445
    • /
    • 2015
  • 본 논문은 SAR 영상에서 객체를 추출하는 새로운 방법으로 특징점 기반 분할 히스토그램 기법을 제안한다. 제안하는 방법은 영상 히스토그램에서 객체로 추정될 수 있는 영역을 세밀하게 추출하기 위해 영상에서 특징점을 추출한 후, 특징점의 밝기를 기준으로 히스토그램을 분할한다. 분할 히스토그램이 배경과 객체 성분을 모두 포함하고 있을 경우 해당 영역의 혼합 확률밀도함수가 교차되는 임계점을 계산한다. 계산된 임계점을 기준으로 현재 영역이 전체 영상에서 차지하는 비율을 비교하여 배경과 객체 여부를 판단한다. 제안하는 방법은 무인 감시 정찰 시스템 등 다양한 응용 기술에 활용될 수 있을 것으로 기대한다.

Gray-Level Co-Occurrence Matrix(GLCM) based vehicle type classification method (GLCM 특징정보 기반의 자동차 종류별 분류 방안)

  • Yoon, Jong-Il;Kim, Jong-Bae
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.410-413
    • /
    • 2011
  • 본 논문에서는 도로 영상에서 검출된 자동차 영상을 종류별 분류를 위해 효과적인 질감 특징정보 기반의 자동차 종류별 분류 방안을 제안한다. 제안한 연구에서는 운전자의 안전운전지원을 위해 도로상에서 검출된 자동차 영역과 자신의 차량과 거리를 추정하기 위해 검출된 자동차의 종류를 인식할 필요가 있다. 즉, 인식된 자동차의 종류에 따라 차량 간 거리를 추정에 필요한 파라미터로 사용할 수 있기 때문이다. 따라서 본 연구에서는 검출된 자동차 영상들로부터 GLCM(gray-level co-occurrence matrix)의 7가지의 특징정보들을 추출하고 SVM을 사용하여 학습 한 후 자동차의 종류(승용, 화물, 버스)를 분류하는 방법을 제안한다. GLCM은 영상이 가진 질감 정보를 효율적으로 분석함으로써 영역의 밝기 변화 정도, 거침 정도, 픽셀 분포 정도 등을 표현하기 때문에 영상내의 포함된 영역을 분류하는데 효과적이다. 제안한 방법을 실제 자동차 규모별 분류에 적용한 결과 약 83%의 분류 성공률을 제시하였다.

Region Merging Method Preserving Object Boundary for Color Image Segmentation (칼라 영상 분할을 위한 경계선 보존 영역 병합 방법)

  • 유창연;곽내정;김영길;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.319-326
    • /
    • 2004
  • In this paper, we propose color image segmentation by region merging method preserving the boundary of an object. The proposed method selects initial region by using quantized image's index map after vector quantizing an original image. After then, we merge regions by applying boundary restricted factor in order to consider the boundary of an object in HSI color space. Also we merge the regions in RGB color space for non-processed regions in HSI color space. And we reduce processing time by decreasing iterative process in region merging algorithm. Experimental results have demonstrated the superiority in region's segmentation results and processing time for various images.

  • PDF

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

Generalized Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequences (동영상에서 일반화된 시공간 적응적 Auto-Regressive 모델의 연구)

  • 두석주;강문기
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.131-134
    • /
    • 1998
  • 본 논문에서는 시공간 적응적 기반영역 (Adaptive Spatio-Temporal Support Region : ASTSR)을 바탕으로 하는 일반화된 Auto-Regressive(AT)모델을 제안한다. 시공간 적응적 기반 영역은 영상 내 경계선의 특성과 동영상에서의 시간적 불연속 (temporal discontinuity) 개념을 이용하여 구성되어질 수 있다. 설정된 시공간 적응적 기반영역은 기존의 AR 모델에 적용되어지는 직사각형 형태의 기반영역에 비하여 보다 정상상태(stationarity)의 특성을 가지며 이로 인해 더 정확한 모델 파라미터들을 추출해 낼 수 있을 뿐 아니라 데이터의 처리량에서도 큰 이득을 얻을 수 있다. 제안된 방법은 손상된 동영상 데이터를 복원(motion picture restoration)하는 측면에 응용되어 실험되어졌으며 기존의 모델과 비교하여 우수한 성능을 보여주었다.

  • PDF

Fast and All-Purpose Area-Based Imagery Registration Using ConvNets (ConvNet을 활용한 영역기반 신속/범용 영상정합 기술)

  • Baek, Seung-Cheol
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1034-1042
    • /
    • 2016
  • Together with machine-learning frameworks, area-based imagery registration techniques can be easily applied to diverse types of image pairs without predefined features and feature descriptors. However, feature detectors are often used to quickly identify candidate image patch pairs, limiting the applicability of these registration techniques. In this paper, we propose a ConvNet (Convolutional Network) "Dart" that provides not only the matching metric between patches, but also information about their distance, which are helpful in reducing the search space of the corresponding patch pairs. In addition, we propose a ConvNet "Fad" to identify the patches that are difficult for Dart to improve the accuracy of registration. These two networks were successfully implemented using Deep Learning with the help of a number of training instances generated from a few registered image pairs, and were successfully applied to solve a simple image registration problem, suggesting that this line of research is promising.

Vehicle detection for Traffic Surveliiance (교통 감시를 위한 자동차 검출)

  • 김종배;이창우;박민호;김항준
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.157-160
    • /
    • 2000
  • 본 논문에서는 교통 감시 시스템의 필수 단계중에 하나인 실시간 자동차 검출 방법을 제안한다. 제안한 방법은 후보 영역 추출 단계와 자동차 인식 단계로 이루어진다. 첫 번째 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 움직임이 있는 후보 영역을 추출한다. 두 번째 단계에서는 추출된 후보 영역에 자동차가 포함되어 있는지를 판별하기 위해 웨이블릿 변환 계수들을 입력으로 하는 신경망을 사용한다. 일반 도로에서 획득한 230대의 자동차가 포함된 동영상을 실험한 결과, 자동차 검출율은 97.8%, 프레임당 처리 시간은 0.12ms이다. 본 논문에서 제안한 실시간 자동차 검출 방법은 교통 감시 시스템에 유용하게 적용될 수 있다.

  • PDF

Human Eye Detection using Skin Color and Moments (피부색과 모멘트를 이용한 눈 영역 검출)

  • Seo, Duck-Won;Yun, Kug-Jin;Kim, Dae-Jung;Kwak, Hoon-Sung
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.143-146
    • /
    • 2001
  • 본 논문에서는 칼라 영상으로부터 피부색 정보 및 모멘트를 이용하여 눈 영역 및 얼굴 영역을 검출하는 알고리즘을 제안한다. 제안한 알고리즘은 눈 영역을 추출함으로써 보다 정확한 얼굴 영역을 검출할 수 있다. 이를 위해 먼저 입력된 칼라 영상의 피부색 정보를 기반으로 추출한 영역으로부터 레이블 영역의 면적과 크기 정보를 이용해 1차, 2차 얼굴 후보 영역을 선택하고 선택된 얼굴 후보 영역간의 기울기 모멘트를 계산하여 3차 얼굴 후보 영역을 추출한다. 또한 추출한 3차 후보 영역으로부터 레이블 영역의 크기 및 구조적 관계를 고려하여 영역 내에서의 눈의 위치를 검출한다. 따라서 제안한 방법은 눈의 기울기 관계를 이용함으로써 얼굴의 크기와 얼굴이 좌우로 기울어진 영상에 대하여 강인한 얼굴 검출 능력을 보인다.

  • PDF

Intensity-Based Bidiredtional Stereo Matching with Occlusions (폐색 영역을 고려한 밝기 기반 쌍방향 스테레오 정합)

  • 주재흠;신홍철;강창순;이상욱;남기건
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.5
    • /
    • pp.88-95
    • /
    • 1999
  • 스테레오 정합에서 가장 중요하고도 어려운 문제는 대응점 추출 문제와 폐색 영역에 대한 처리이다. 특히 폐색 영역의 점들은 대응점이 존재하지 않기 때문에 변이 정보 획득에 많은 어려움이 있다. 이러한 문제에 대한 효과적인 접근을 위해 본 논문에서는 쌍방향 정합 알고리즘을 기반으로 폐색 영역의 정합 정도를 향상 시키는 방법을 제안한다. 즉 좌,우 영상 각각의 기준에 대해 독립적인 변이 정보를 구하고, 이를 바탕으로 정합의 타당성 여부를 검토하여 그 결과를 다음 처리에서 반영하는 상호 보완적인 반복 처리 기법을 적용하였다. 이 과정에서 구해진 폐색 영역에 대한 변이 정보는 스테레오 영상 모델의 기하학적 구조를 적용하여 좌, 우측 기준 정합에 대해 그 좌, 우측 점들의 변이 정보들로 대체함으로써 불연속점들의 무뎌짐(blurring)현상을 개선하였다. 한편, 실험 결과를 보다 객관적으로 비교하기 위해 정합율과 에러율이라는 파라메터를 정의하여 개선된 결과를 보였다.

  • PDF