• Title/Summary/Keyword: 영어 문장처리

Search Result 131, Processing Time 0.022 seconds

Performance of Multi-Lingual Spoken Language Translation System using C-STAR Interchange Format (C-STAR 인터체인지 포멧을 이용한 다국어 대화체 번역시스템의 성능)

  • Choi, Un-Cheon;Park, Jun;Yang, Jae-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.199-202
    • /
    • 1999
  • ETRI 통신단말연구부에서는 1999년 7월 22일에 C-STAR 회원국이 함께 참여하는 국제간 음성언어번역 시스템 공동 시연을 가졌다. 이 논문은 다국어 대화체 번역시스템인 음성언어번역 시스템의 국제간 공동 시연에 사용된 한국어 번역 시스템의 성능에 대해 기술한다. 번역 시스템의 성능은 전사문장을 이용한 영어, 일본어, 한국어의 번역 결과와 음성인식 결과를 이용한 각 언어의 번역 결과를 평가하여 얻었다. 그리고 세부 시스템의 성능을 알아보기 위해 음성인식의 결과로부터 C-STAR IF(interchange format)까지의 해석 시스템과 C-STAR IF로부터 한국어, 영어, 일본어로 생성해 내는 생성 시스템의 성능으로 나누어서 평가한다.

  • PDF

Construct ion of Metaphor Ontology Using HowNet : Based on the Concept, 'Culture' (HowNet 기반 은유 온톨로지 구축: 추상개념 '문화'를 중심으로)

  • An, Dong-Gun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.205-212
    • /
    • 2006
  • 본 연구에서는 추상적 사고를 가능하게 해주는 개념은유 표현의 서술어를 분석하여, 추상개념의 근원영역을 찾는 알고리즘을 HowNet 지식 시스템을 이용하여 제안하고자 한다. 실제로 추상개념 '문화' 가 쓰인 242개의 은유 표현 용례 문장을 가지고 제안된 알고리즘으로 근원영역을 찾고. 이를 토대로. 목표영역 '문화' 의 근원영역이 추론기에 의하여 자동적으로 추론되는 HowNet 기반 은유 온톨로지의 구축 방안을 제시하고자 한다. 또한, 한국어 '문화' 와 영어표현 'Culture'의 근원영역 비교를 통하여 구축된 온톨로지를 영어 번역 및 작문에 어떻게 활용할 수 있는지 보이고자 한다.

  • PDF

A Syntax-Based Hybrid System for Korean Open Information Extraction (구문 분석 결과를 이용한 한국어 무제한 정보추출)

  • Kim, Byungsoo;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.41-45
    • /
    • 2015
  • 무제한 정보추출은 주로 영어를 대상으로 연구가 진행 되었지만, 최근에는 영어가 아닌 다른 언어에 대한 적용이 시도되고 있다. 본 논문에서는 관계 어휘의 유형을 동사형과 명사형 2가지로 정의하고, 각 유형별로 구문 분석 결과 기반의 서로 다른 방법론을 적용하는 한국어 대상 무제한 정보추출 시스템을 소개한다. 동사형 관계 어휘에 대해서는 의존 관계 기반의 추출 규칙을 적용하고, 명사형 관계 어휘에 대해서는 대량의 말뭉치로부터 자동으로 학습한 의존 관계 구조 기반의 추출 패턴을 적용한다. 임의의 100개 문장에 대해서 수행한 결과는 산출된 전체 트리플에 대해 0.8이상의 정밀도를 보임으로써 본 논문에서 제안하는 방법의 효용성을 증명하였다.

  • PDF

Long-KE-T5: Korean-English Language model for Long Sequences (Long-KE-T5: 긴 맥락 파악이 가능한 한국어-영어 언어 모델 구축)

  • San Kim;Jinyea Jang;Minyoung Jeung;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.168-170
    • /
    • 2023
  • 이 논문에서는 7,400만개의 한국어, 영어 문서를 활용하여 최대 4,096개의 토큰을 입력으로하고 최대 1,024개의 토큰을 생성할 수 있도록 학습한 언어모델인 Long-KE-T5를 소개한다. Long-KE-T5는 문서에서 대표성이 높은 문장을 생성하도록 학습되었으며, 학습에 사용한 문서의 길이가 길기 때문에 긴 문맥이 필요한 태스크에 활용할 수 있다. Long-KE-T5는 다양한 한국어 벤치마크에서 높은 성능을 보였으며, 사전학습 모델링 방법이 텍스트 요약과 유사하기 때문에 문서 요약 태스크에서 기존 모델 대비 높은 성능을 보였다.

  • PDF

Evaluation of Large Language Models' Korean-Text to SQL Capability (대형 언어 모델의 한국어 Text-to-SQL 변환 능력 평가)

  • Jooyoung Choi;Kyungkoo Min;Myoseop Sim;Haemin Jung;Minjun Park;Stanley Jungkyu Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.171-176
    • /
    • 2023
  • 최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.

  • PDF

Design of a Multilingual Translation System Based on Interlingual Approach (중간언어에 기반한 기계 번역시스템의 설계)

  • Kim, Sang-Kuk;Park, Chang-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.521-526
    • /
    • 1993
  • 다언어간 번역을 지향하는 기계번역시스템의 개발을 위해서는, 의미 이해기반의 해석기술과 언어에 독립적인 생성기술의 설계가 기본이므로 원시언어와 목표언어가 어느 한쪽의 언어지식에 의존하지 않고 언어형식화가 가능한 중간언어 구조를 설정하는 것이 중요하다. 따라서, 한국어를 중심으로 하는 다언어 번역의 설계에서는 비교적 문구조의 정형화가 이루어진 영어와는 달리 어순 배열의 자유도가 높고 조사의 격표시로 문장구조가 결정되는 한국어의 특성을 고려한 해석 및 생성 메카니즘이 필요하다. 본 논문에서는 문장에 내포된 심층의미의 중간 표현으로써, 단어의 의미를 개념화시킨 개념소(Conceptual Primitive)간의 의미적 결합관계를 나타내는 개념 그래프(Conceptual Graph)를 채택하고 설계한 다언어 번역지향의 중간언어기반 번역시스템에 대하여 기술한다.

  • PDF

An Intelligent Character System Using Multi-Language Based Question Answering System (다국어 기반의 질의응답시스템을 활용한 지능형 케릭터 시스템)

  • Park, Hong-Won;Lee, Ki-Ju;Lee, Su-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.215-220
    • /
    • 2002
  • 질의응답시스템을 지능형 케릭터 시스템에 활용하기 위해서는 불특정한 주제에 대해 불특정 다수의 사용자와 대화할 수 있는 정교한 대화 모델이 필요하다. 이러한 대화 모델은 사용자의 질의문장을 인식하고 질의의도를 파악한 후 케릭터의 특정지식으로 접근하여 해당 지식을 사용자의 요구에 맞는 응답문의 형태로 생성해 내는 과정이 필수적으로 포함되어야 한다. 본 논문에서는 논의의 대상이 되는 질의응답시스템이 다국어 기반이라는 점을 고려하여 질의응답시스템을 지능형 케릭터에 활용하는 과정에서 케릭터의 지식구조 설계는 물론이고 질의문장 분석과 응답 문 생성의 방법론에 있어서도 한국어, 영어, 일본어, 중국어 각각의 언어적 특질을 반영함으로써 형태적, 통사적 차이로 인한 애로점을 최소화할 수 있도록 하였다.

  • PDF

Methodology of Automatic Editing for Academic Writing Using Bidirectional RNN and Academic Dictionary (양방향 RNN과 학술용어사전을 이용한 영문학술문서 교정 방법론)

  • Roh, Younghoon;Chang, Tai-Woo;Won, Jongwun
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.175-192
    • /
    • 2022
  • Artificial intelligence-based natural language processing technology is playing an important role in helping users write English-language documents. For academic documents in particular, the English proofreading services should reflect the academic characteristics using formal style and technical terms. But the services usually does not because they are based on general English sentences. In addition, since existing studies are mainly for improving the grammatical completeness, there is a limit of fluency improvement. This study proposes an automatic academic English editing methodology to deliver the clear meaning of sentences based on the use of technical terms. The proposed methodology consists of two phases: misspell correction and fluency improvement. In the first phase, appropriate corrective words are provided according to the input typo and contexts. In the second phase, the fluency of the sentence is improved based on the automatic post-editing model of the bidirectional recurrent neural network that can learn from the pair of the original sentence and the edited sentence. Experiments were performed with actual English editing data, and the superiority of the proposed methodology was verified.

A study on the Character Correction of the Wrongly Recognized Sentence Marks, Japanese, English, and Chinese Character in the Off-line printed Character Recognition (오프라인 인쇄체 문장부호, 일본 문자, 영문자, 한자 인식에서의 오인식 문자 교 정에 관한 연구)

  • Lee, Byeong-Hui;Kim, Tae-Gyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.184-194
    • /
    • 1997
  • In the recent years number of commercial off-line character recognition systems have been appeared in the Korean market. This paper describes a "self -organizing" data structure for representing a large dictionary which can be searched in real time and uses a practical amount of memory, and presents a study on the character correction for off-line printed sentence marks, Japanese, English, and Chinese character recognition. Self-organizing algorithm can be recommenced as particularly appropriate when we have reasons to suspect that the accessing probabilities for individual words will change with time and theme. The wrongly recognized characters generated by OCR systems are collected and analyzed Error types of English characters are reclassified and 0.5% errors are corrected using an English character confusion table with a self-organizing dictionary containing 25,145 English words. And also error types of Chinese characters are classified and 6.1% errors are corrected using a Chinese character confusion table with a self-organizing dictionary carrying 34,593 Chinese words.ese words.

  • PDF

Adaptive English Context-Sensitive Spelling Error Correction Techniques for Language Environments (언어 사용환경에 적응적인 영어 문맥의존 철자오류 교정 기법)

  • Kim, Minho;Jin, Jingzhi;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.133-136
    • /
    • 2015
  • 문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.

  • PDF