• Title/Summary/Keyword: 영어 문장처리

Search Result 131, Processing Time 0.028 seconds

General Relation Extraction Using Probabilistic Crossover (확률적 교차 연산을 이용한 보편적 관계 추출)

  • Je-Seung Lee;Jae-Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.371-380
    • /
    • 2023
  • Relation extraction is to extract relationships between named entities from text. Traditionally, relation extraction methods only extract relations between predetermined subject and object entities. However, in end-to-end relation extraction, all possible relations must be extracted by considering the positions of the subject and object for each pair of entities, and so this method uses time and resources inefficiently. To alleviate this problem, this paper proposes a method that sets directions based on the positions of the subject and object, and extracts relations according to the directions. The proposed method utilizes existing relation extraction data to generate direction labels indicating the direction in which the subject points to the object in the sentence, adds entity position tokens and entity type to sentences to predict the directions using a pre-trained language model (KLUE-RoBERTa-base, RoBERTa-base), and generates representations of subject and object entities through probabilistic crossover operation. Then, we make use of these representations to extract relations. Experimental results show that the proposed model performs about 3 ~ 4%p better than a method for predicting integrated labels. In addition, when learning Korean and English data using the proposed model, the performance was 1.7%p higher in English than in Korean due to the number of data and language disorder and the values of the parameters that produce the best performance were different. By excluding the number of directional cases, the proposed model can reduce the waste of resources in end-to-end relation extraction.

Automatic Korean to English Cross Language Keyword Assignment Using MeSH Thesaurus (MeSH 시소러스를 이용한 한영 교차언어 키워드 자동 부여)

  • Lee Jae-Sung;Kim Mi-Suk;Oh Yong-Soon;Lee Young-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.155-162
    • /
    • 2006
  • The medical thesaurus, MeSH (Medical Subject Heading), has been used as a controlled vocabulary thesaurus for English medical paper indexing for a long time. In this paper, we propose an automatic cross language keyword assignment method, which assigns English MeSH index terms to the abstract of a Korean medical paper. We compare the performance with the indexing performance of human indexers and the authors. The procedure of index term assignment is that first extracting Korean MeSH terms from text, changing these terms into the corresponding English MeSH terms, and calculating the importance of the terms to find the highest rank terms as the keywords. For the process, an effective method to solve spacing variants problem is proposed. Experiment showed that the method solved the spacing variant problem and reduced the thesaurus space by about 42%. And the experiment also showed that the performance of automatic keyword assignment is much less than that of human indexers but is as good as that of authors.

Open-domain Question Answering Using Lexico-Semantic Patterns (Lexico-Semantic Pattern을 이용한 오픈 도메인 질의 응답 시스템)

  • Lee, Seung-Woo;Jung, Han-Min;Kwak, Byung-Kwan;Kim, Dong-Seok;Cha, Jeong-Won;An, Joo-Hui;Lee, Gary Geun-Bae;Kim, Hark-Soo;Kim, Kyung-Sun;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.538-545
    • /
    • 2001
  • 본 연구에서는 오픈 도메인에서 동작할 수 있는 질의 응답 시스템(Open-domain Question Answer ing System)을 구현하고 영어권 TREC에 참가한 결과를 기술하였다. 정답 유형을 18개의 상위 노드를 갖는 계층구조로 분류하였고, 질문 처리에서는 LSP(Lexico-Semantic Pattern)으로 표현된 문법을 사용하여 질문의 정답 유형을 결정하고, lemma 형태와 WordNet 의미, stem 형태의 3가지 유형의 키워드로 구성된 질의를 생성한다. 이 질의를 바탕으로, 패시지 선택에서는 문서검색 엔진에 의해 검색된 문서들을 문장단위로 나눠 정수를 계산하고, 어휘체인(Lexical Chain)을 고려하여 인접한 문장을 결합하여 패시지를 구성하고 순위를 결정한다. 상위 랭크의 패시지를 대상으로, 정답 처리에서는 질문의 정답 유형에 따라 품사와 어휘, 의미 정보로 기술된 LSP 매칭과 AAO (Abbreviation-Appositive-Definition) 처리를 통해 정답을 추출하고 정수를 계산하여 순위를 결정한다. 구현된 시스템의 성능을 평가하기 위해 TREC10 QA Track의 main task의 질문들 중, 200개의 질문에 대해 TRIC 방식으로 자체 평가를 한 결과, MRR(Mean Reciprocal Rank)은 0.341로 TREC9의 상위 시스템들과 견줄 만한 성능을 보였다.

  • PDF

A Study on the Korean Parts-of-Speech for Korean-English Machine Translation (기계번역용 한국어 품사에 관한 연구)

  • 송재관;박찬곤
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • This Paper classified korean Parts-of-speech for korean-english machine translation and investigated morphological characters of each parts-of-speech. Korean standard grammar classified parts-of-speech by semantic, functional and formal character. Many rules make a difficulties the understanding of grammar structure and parts-of-speech classification and it is necessary to preprocess at machine translation. This paper classified korean parts-of-speech by one rule. The parts-of-speech suggested in this paper have a same syntactic role and same parts-of-speech with english dictionary, and express the structure of korean sentence. And also it can make target language by pattern matching in korean-english translation.

  • PDF

A Recognition of the Printed Alphabet by Using Nonogram Puzzle (노노그램 퍼즐을 이용한 인쇄체 영문자 인식)

  • Sohn, Young-Sun;Kim, Bo-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.451-455
    • /
    • 2008
  • In this paper we embody a system that recognizes the printed alphabet of two font types (Batang, Dodum) inputted by a black-and-white CCD camera and converts it into an editable text form. The image of the inputted printed sentences is binarized, then the rows of each sentence are separated through the vertical projection using the Histogram method, and the height of the characters are normalized to 48 pixels. With the reverse application of the basic principle of the Nonogram puzzle to the individual normalized character, the character is covered with the pixel-based squares, representing the characteristics of the character as the numerical information of the Nonogram puzzle in order to recognize the character through the comparison with the standard pattern information. The test of 2609 characters of font type Batang and 1475 characters of font type Dodum yielded a 100% recognition rate.

Implementation of TTS Engine for Natural Voice (자연음 TTS(Text-To-Speech) 엔진 구현)

  • Cho Jung-Ho;Kim Tae-Eun;Lim Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.4 no.2
    • /
    • pp.233-242
    • /
    • 2003
  • A TTS(Text-To-Speech) System is a computer-based system that should be able to read any text aloud. To output a natural voice, we need a general knowledge of language, a lot of time, and effort. Furthermore, the sound pattern of english has a variable pattern, which consists of phonemic and morphological analysis. It is very difficult to maintain consistency of pattern. To handle these problems, we present a system based on phonemic analysis for vowel and consonant. By analyzing phonological variations frequently found in spoken english, we have derived about phonemic contexts that would trigger the multilevel application of the corresponding phonological process, which consists of phonemic and allophonic rules. In conclusion, we have a rule data which consists of phoneme, and a engine which economize in system. The proposed system can use not only communication system, but also utilize office automation and so on.

  • PDF

An ERP study on the processing of Syntactic and lexical negation in Korean (부정문 처리와 문장 진리치 판단의 인지신경기제: 한국어 통사적 부정문과 어휘적 부정문에 대한 ERP 연구)

  • Nam, Yunju
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.469-499
    • /
    • 2016
  • The present study investigated the cognitive mechanism underlying online processing of Korean syntactic (for example, A bed/a clock belongs to/doesn't belong to the furniture "침대는/시계는 가구에 속한다/속하지 않는다") and lexical negation (for example, A tiger/a butterfly has/doesn't have a tail "호랑이는/나비는 꼬리가 있다/없다") using an ERP(Event-related potentials) technique and a truth-value verification task. 23 Korean native speakers were employed for the whole experiment and 15's brain responses (out of 23) were recorded for the ERP analysis. The behavioral results (i.e. verification task scores) show that there is universal pattern of the accuracy and response time for verification process: True-Affirmative (high accuracy and short latency) > False-Affirmative > False-Negated > True-Negated. However, the components (early N400 & P600) reflecting the immediate processing of a negation operator were observed only in lexical negation. Moreover, the ERP patterns reflecting an effect of truth value were not identical: N400 effect was observed in the true condition compared to the false condition in the lexically negated sentences, whereas Positivity effect (like early P600) was observed in the false condition compared to the true condition in the syntactically negated sentences. In conclusion, the form and location of negation operator varied by languages and negation types influences the strategy and pattern of online negation processing, however, the final representation resulting from different computational processing of negation appears to be language universal and is not directly affected by negation types.

Constructing a Korean Language Resource and Developing a Temporal Information Extraction System for Korean Documents (한국어 시간정보추출 연구를 위한 언어자원 및 시스템 구축)

  • Lim, Chae-Gyun;Oh, KyoJoong;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.636-638
    • /
    • 2018
  • 본 논문에서는 영어권에 비해 상대적으로 부족한 한국어 언어자원을 지속적으로 구축함으로써 한국어 문서로 구성된 시간정보 주석 말뭉치를 확보하고 이를 바탕으로 한국어 시간정보추출 시스템에 대한 연구를 수행한다. 말뭉치 구축 과정에서의 시간정보 주석 작업은 가이드라인을 숙지한 주석자들이 수작업으로 기록하고, 어떤 주석 결과에 대해 의견이 다른 경우에는 중재자가 주석자들과 함께 검토하며 합의점을 도출한다. 시간정보추출 시스템은 자연어 문장에 대한 형태소 분석결과를 이용하여 시간표현(TIMEX3), 시간관계와 연관된 사건(EVENT), 시간표현 및 사건들 간의 시간관계(TLINK)를 추출하는 단계로 이루어진다. 추출된 한국어 시간정보는 문서 내 공통된 개체에 대한 공간정보와 결합함으로써 시공간정보가 모두 반영된 SPOTL을 생성한다. 추후 실험을 통하여 제안시스템의 구체적인 시간정보추출 성능을 파악할 것이다.

  • PDF

Korean Morphological Analysis Considering a Term with Multiple Parts of Speech ("의미적 한 단어" 유형 분석 및 형태소 분석 기법)

  • Hur, Yun-Young;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.128-131
    • /
    • 1994
  • 한국어 문서중 신문이나 시사지, 법률관련문서, 경제학관련문서, 국문학관련문서와 같은 전문분야 문서에는 한글, 한자, 영어, 문장부호와 같은 기호들의 결합으로 이루어지면서 하나의 뜻으로 나타내는 "의미적 한 단어"가 많이 존재한다. 이러한 단어들은 이를 고려하지 못한 형태소 분석기의 분석률을 감소시키고, 오분석율을 증가시킨다. 본 논문은 "의미적 한 단어"의 유형과 분석과정에 따른 유형을 분류하였으며 그에 적합한 형태소 분석기법을 제시하였다. 유형 분류과 제사된 형태소 분석기법으로 구현된 형태소 분석기는 기존의 형태소 분석기보다 분석률이 증가되었으며 오분석률은 감소되었다.

  • PDF

Design and Implementation of a Tense Helper for a Korean-to-English Machine Translation System (한/영 기계번역 시스템을 위한 시제 도우미의 설계와 구현)

  • 이병희
    • Journal of Internet Computing and Services
    • /
    • v.2 no.4
    • /
    • pp.55-67
    • /
    • 2001
  • Commercial machine translation systems have been announcing recently, However, there are problems that the systems have shown mistranslations, yet. Among these mistranslations, this paper is interested in the mistakes of tense processing. The paper compares Korean tenses with 12 English ones: present. past, future, present perfect. past perfect, future perfect. present progressive, past progressive, future progressive, present perfect progressive, past perfect progressive. future perfect progressive. Next, we perform the meaning analysis of Korean tenses. Then we describe the structure of the tenses based on Conceptual Graph(CG). In the experiment. the paper implements the program that translates sentences included in the tenses into CG.

  • PDF