• Title/Summary/Keyword: 영상 제거

Search Result 2,943, Processing Time 0.025 seconds

Noise reduction Algorithm for CFA Images (컬러 필터 배열 영상에서의 잡음제거 알고리즘)

  • Lee, Min-Seok;Park, Sang-Wook;Kwon, Ji-Yong;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.67-69
    • /
    • 2010
  • 대부분의 디지털 카메라는 컬러 필터 배열(Color Filter Array)을 가진 하나의 영상 획득 센서를 사용한다. 따라서 영상획득 이후에 컬러 보간 알고리즘이 필수적으로 진행된다. 또 영상 획득 과정에서 센서의 열화나 암전류 등과 같은 잡음이 발생하여 영상 잡음 제거 알고리즘이 필요하다. 하지만 기존의 대부분의 영상 잡음 제거 알고리즘은 컬러 필터 배열 영상의 특징인 모자이크 데이터 기반이 아닌 컬러 보간 이후의 풀 컬러영상에(YCbCr) 적용되고 있다. 따라서 잡음이 포함된 영상으로 컬러 보간을 할 경우 잡음의 공간적 상관관계(spatial correlation)가 커짐에 의한 잡음 번짐 때문에 컬러 보간 이후의 잡음제거는 더욱 어렵게 된다. 이와 같은 문제를 해결하기 위해 컬러 필터 배열 영상에 대한 잡음제거 알고리즘이 연구되고 있으며, 본 논문에서도 CMOS/CCD의 이미지 센서에서 획득된 베이어 컬러 필터 배열 영상에서 잡음을 제거하는 알고리즘을 제안한다. 이를 위해서 베이어 컬러 필터 배열 영상 데이터에서 경계(edge)의 방향성을 고려한 LMMSE 방법을 기반으로 한 잡음제거 알고리즘을 제안한다. 제안하는 알고리즘은 영상의 경계를 보존해주며 잡음제거 과정 다음에 진행되는 컬러 보간 과정에서의 잡음 번짐의 문제를 해결할 수 있다. 실험 결과를 통해 향상된 잡음 제거 효과를 확인하였다.

  • PDF

Image Destylization (영상 디스타일화)

  • Lee, Hyun-Jun;Lee, Seung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06b
    • /
    • pp.199-202
    • /
    • 2007
  • 본 논문에서는 주어진 영상을 필터링하여 영상의 스타일을 제거하는 방법을 제시한다. 스타일이 제거된 영상은 영상 분류, 특징점 인식, 영상 분할 등의 다양한 용도에 쓰일 수 있다. 또한 원래 영상과 스타일이 제거된 영상을 비교하여 영상의 스타일을 유추할 수 있다. 본 논문에서는 이를 위해 주어진 영상에서 스타일 벡터를 계산한 후 계산된 스타일 벡터를 이용하여 영상에 양방향 필터링을 적용한다. 이 때 영상의 경계 부분에서 스타일을 효과적으로 분리하는 방법과 다중 해상 처리 방법을 적용하여 다양한 크기와 방향의 스타일을 찾아낸다. 그 결과 주어진 영상에서 다양한 크기와 방향의 스타일을 제거하고 영상의 중요한 내용만을 효과적으로 나타낸다.

  • PDF

Image denoising using Generative Adversarial Network (생성적 적대 신경망을 이용한 영상 잡음 제거)

  • Park, Gu Yong;Kim, Yoonsik;cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.213-216
    • /
    • 2019
  • 영상 잡음 제거 알고리즘은 잡음으로 오염된 영상으로부터 잡음이 제거된 깨끗한 영상을 추정하여 복원하는 연구이다. 기존의 모델 기반 방법의 영상 잡음 제거 알고리즘은 영상을 복원하는 과정에서 최적화 문제를 풀어야 한다는 단점과 매개변수를 직접 선택을 해주어야 한다는 단점을 가진다. 본 논문에서는 딥러닝을 이용한 학습기반 방법의 영상 잡음 제거 연구를 소개한다. 먼저, 신경망의 구축을 위하여 신경망의 구성 요소는 Instance Normalization 과 컨볼루션 신경망을 이용한 모델을 제안하였고, 여러 연구 분야에서 좋은 성능을 보이는 U-Net 구조를 전체적인 구조로 차용하였다. 신경망의 학습을 위하여 DnCNN 에서 제안한 잡음을 학습하는 잔여 학습 기법을 채택하였고, 기존의 영상 잡음 제거 알고리즘의 단점인 결과 영상이 흐릿해지는 현상을 보완하기 위하여 생성적 적대 신경망 학습 방법을 적용하였다. 본 논문에서 제안한 신경망을 이용한 잡음 제거 영상의 결과가 기존의 연구 방법들 보다 인지적인 측면에서 좋은 결과를 보임을 확인하였다.

  • PDF

Noise Reduction of Binary Image in Non-Impulse Noise (비임펄스 잡음이 포함된 이진영상의 잡음제거)

  • 김재석;정성옥;오무송
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.511-513
    • /
    • 2002
  • 본 논문에서는 영상에 Salt-Pepper와 같은 임펄스 잡음이 존재하는 영상에 대한 잡음 제거는 기존의 잡음제거 방법인 미디언 필터를 이용하여 잡음을 제거할 수 있지만 임펄스 잡음이 아닌 비임펄스 잡음이 포함된 영상에 대해서는 미디언 필터를 이용하여 비임펄스 잡음이 제거되지 않으므로 임펄스 잡음이 아닌 비임펄스 잡음이 존재하는 영상에 대한 잡음 제거를 형태학적 연산을 이용하여 잡음 제거하는 방법을 제안한다.

  • PDF

The Quantization Noise Reducing Effect on Enrage Signals by the Soft-Threshold Technique (Soft-Threshold 기법을 이용한 영상신호의 양자화 잡음 제거 효과)

  • 우창용;박남천
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.393-396
    • /
    • 2003
  • 고압축 영상신호에서 발생된 양자화잡음 제거 효과를 비교하였다. 잡음제거는 Soft-Threshold 기법을 이용하여 각 대역에서 양자화 잡음을 제거하였다. Soft-Threshold 기법에 적용하기 위해 각 대역별 잡음분산을 Monotonic 변환 및 SURE, Visu 방법으로 추정하여 양자화 잡음제거 효과를 PSNR로 비교하였다. 양자화 잡음 제거 결과 영상에 따라 달라지지만 유니폼 양자화 영상에서 약 5~6dB 정도의 영상품질 개선 효과가 있었다.

  • PDF

A Noise Reduction Technique based in the Compressed image using Double Decoding (2차 복호화를 통한 압축 영상의 잡음 제거 기법)

  • 김영삼;김도년;조동섭
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.429-434
    • /
    • 1997
  • 영상 평활화(Image Smoothing) 작업은 영상 신호 표본화, 정량화, 통신 이동과 같은 과정을 거치면서 잡음 등의 불필요한 신호가 포함된 디지털 영상의 잡음을 감소키는데 많이 이용되고 있다. 이와 같은 영상 평활화 작업에는 대부분 전역적인 공간 영역 혹은 주파수 영역의 전역적인 필터링 기법이 이용되고 있다. 그러나, 기존의 방법들은 왜곡된 잡음 픽셀들의 정보를 그대로 반영하기 때문에 잡음 제거 결과 복원 영상의 선명도는 크게 저해된다. 본 논문에서는 특히나 양자화 과정을 통해 잡음 정보의 변형이 극대화되어지는 압축 영상을 대상으로 하여 적절한 잡음제거 기법을 제안하고자 한다. 특히, 압축 영상의 잡음 추출은 1차 복호화 후의 공간 도메인에서, 추출된 잡음 제거는 주파수 도메인에서 수행함으로써 2차 복호화 후의 잡음제거 결과 영상은 압축 영상의 잡음 제거에 따른 본질적인 문제를 해결하였으며, 실험 결과 역시 다른 기존의 방법에 비해 우수한 성능을 발휘하였다.

  • PDF

Analysis and dehazing of near-infrared images (근적외선(NIR) 영상의 특성 분석 및 안개제거)

  • Yu, Jae Taeg;Ra, Sung Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Color image dehazing techniques have been extensively studied, and especially the dark channel prior (DCP)-based method has been widely used. Near infrared (NIR) image based applications are also widespread; however, NIR image-specific dehazing techniques have not attracted great interest. In this paper, the characteristics of NIR images are analyzed and compared with the color images' characteristics. The conventional color image dehazing method is also applied to NIR images to understand its effectiveness on different frequency-band signals. Furthermore, we modify the DCP method considering the characteristics of NIR images and show that our proposed method results in improved dehazed NIR images.

Generative Adversarial Network based CNN model for artifact reduction on HEVC-encoded video (HEVC 비디오 영상 압축 왜곡 제거를 위한 Generative Adversarial Network 적용 기법)

  • Jeon, Jin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.192-193
    • /
    • 2017
  • 본 논문에서는 비디오 영상 압축 왜곡 제거를 위해 Generative Adversarial Network (GAN)을 적용한 컨벌루션 뉴럴 네트워크 (CNN) 모델을 제안한다. GAN 모델의 생성 모델 (Generator)은 노이즈가 아닌 High Efficiency Video Coding (HEVC)로 압축된 영상을 입력 받은 뒤, 압축 왜곡이 제거된 영상을 출력하며, 분류 모델 (Discriminator)은 원본 영상과 압축된 영상을 입력 받은 뒤, 원본 영상과 압축 왜곡이 포함된 압축된 영상을 분류한다. 분류 모델은 5 개 층을 쌓은 컨벌루션 뉴럴 네트워크 구조를 사용하였고, 생성 모델은 5 개 층을 쌓은 SRCNN 구조와 VDSR 구조를 기반으로 한 두 개의 모델을 이용한 실험을 통해 얻은 결과를 비교하였다. 비디오 영상 압축 왜곡 제거 실험을 위해 원본 비디오 영상을 HEVC 을 이용하여 2Mbps, 4Mbps 로 압축된 영상을 사용하였으며, 압축된 영상 대비 왜곡이 제거된 영상을 얻을 수 있었다.

  • PDF

Removable Logo Watermarking Technique (제거 가능한 로고 워터마킹 기법)

  • Cho, Dong-Joon;Choi, Hyuk
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.857-860
    • /
    • 2008
  • In this paper, we propose a removable logo watermarking technique for copyright protection of digital image. Then, visible logo is inserted into digital image to protect copyright, and the information removed by the logo is embedded by a new quantization watermarking. In a legal usage, the image can be reconstructed without logo after watermarking detection process. Experiment results show that the proposed method maintains high image quality in both watermarked images and reconstructed images, and is practical and effective in protection of image copyright.

Adaptive Noise Reduction Algorithm for Image Based on Block Approach (블럭 방법에 근거한 영상의 적응적 잡음제거 알고리즘)

  • Kim, Yeong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.225-235
    • /
    • 2012
  • Noise reduction is an important issue in the field of image processing because image noise worsens the quality of the input image. The basic difficulty is that the noise and the signal are not easy to distinguish. Simple moothing is one of the most basic and important procedures to remove the noise, however, it does not consider the level of noise. This method effectively reduces the noise but the feature area is simultaneously blurred. This paper considers the block approach to detect noise and image features of the input image so that noise reduction could be adaptively applied. Simulation results show that the proposed algorithm improves the overall quality of the image by removing the noise according to the noise level.