본 논문은 렌즈 등에 의한 왜곡현상을 가지고 있는 위성사진이나 의료 영상을 기하학적 변환을 통하여 보정하는 경우나, 영상 광고 등 많은 영상 관련 분야에 필요한 복원을 위하여 역사영 변환을 보다 더 효율적으로 하기 위한 고차의 비-스플라인을 적용한 방법을 제안한다. 사영은 정확한 정보를 오차가 존재하는 왜곡된 정보공간으로의 변형과정으로서, 정보에서 손실의 존재를 당연시하고 있는 과정이다. 또한, 역사영에서는 관측된 정보가 왜곡된 정보이기 때문에, 관측에 의존하여 사영과정에서 손실된 정보를 추정해 나가는 과정이 매우 어려운 난제로 연구되고 있다. 본 연구에서는 선형적으로 변형된 영상의 복원 방법 개선을 위하여 비-스플라인 내간법을 적용한 방법 중에서, 비-스플라인의 차수를 높인 방법을 사용한 새로운 방법을 제안하여, 역사영의 과정에서 적은 오차를 갖고 원래영상으로 복원하는 방법을 제안하였다. 실험에서는, 제안된 고차의 비-스플라인 내간법을 적용한 결과로서, 원래의 영상에 가까게 복원을 시키는 제안된 역변환 방법의 우수성을 보였다.
다양한 분야에서 현재 활용되고 있는 딥러닝 과정은 데이터 준비, 데이터 전처리, 모델 생성, 모델 학습, 모델 평가로 구성 된다. 이중 모델 학습 과정에서 손실함수는 모델이 학습하면서 출력한 값을 실제 값과 비교하여 그 차이를 출력하게 되고, 출력된 손실값을 기반으로 모델은 역전파 알고리즘을 통해 손실값이 감소하는 방향으로 가중치를 수정해가며 학습을 진행한다. 본 논문에서는 바이오마커 추출을 위한 딥러닝 모델에서 사용될 신경망 출력 값의 손실도를 측정하여 출력해주는 다양한 손실함수를 분석하고 실험을 통해 최적의 손실함수를 찾아내고자 한다.
MPEG-2 압축 방법을 이용한 비트열은 가변장 부호를 이용하기 때문에 에러에 매우 민감하다. 하나의 비트에러가 발생하더라도, 다음 동기화 부호를 찾을 때까지 매크로블록 또는 슬라이스 단위의 정보 손실을 초래하기 때문에 복원 영상의 화질 열화가 심각하다. 따라서 에러 영상의 복원을 위한 에러 은닉 기술은 복호기 쪽에 매우 중요하다. 기존에 발표된 방법들은 에러에 의한 손실이 매크로블록 단위로 발생했다는 가정 하에 손상된 매크로블록주위의 상, 하, 좌, 우 네 방향의 데이터를 이용하였다. 하지만 대부분의 심각한 에러는 슬라이스 단위로 발생하기 때문에 좌, 우의 데이터는 사용할 수 없다. 본 논문에서는 이러한 슬라이스 단위의 에러를 은닉하기에 적합한 알고리즘을 제안한다. 상, 하, 오른쪽 상단, 왼쪽 상단, 오른쪽 하단, 왼쪽 하단의 6영역의 데이터를 이용하여 두 가지 대표적인 에러 은닉 방법인 boundary matching 방식과 주변 움직임 벡터 정보를 이용한 움직임 벡터 추정 방식에 적용하였다. 실험 곁과 기존의 방법에 비해 향상된 복원 화질을 얻을 수 있었다.
에러 발생율이 높은 이동 통신 채널 환경에서는 부호화된 비디오 스트림 전송시 발생된 채널 에러는 비디오 화질에 큰 영향을 줄 수 있다. 본 논문에서 현재 널리 사용되고 있는 H.263 부/복호화기에서 전송도중 에러가 발생했을 경우 추가적인 데이터 삽입 없이 효율적으로 에러를 은닉할 수 있는 기법에 관하여 제안하였다. 특히, 영상신호는 대개 인트라 픽쳐와 인터 픽쳐로 크게 구분되는데, 이들 중 부호화된 스트림에서 발생빈도가 놀은 인터 픽쳐에 대한 오류은닉을 우선적으로 목표로 하였다. 인터 프레임 픽쳐에서 DFD나 움직임벡터 손실시, 정확히 복원된 손실된 매크로블럭에 인접한 주변 픽셀 4*4을 이용해서 이전픽쳐에서 움직임벡터을 추정하고, 추정된 움직임 벡터을 가지고 손실된 매크로블록을 복원한다. 이때 주변블럭의 움직임벡터 추정시 소요되는 계산량은 충분히 디코더측에서 수용한다는 전제하에서 실험하였다.
RGBD 영상은 다양한 3 차원 비전 연구에서 유용하게 사용되며 고품질 RGBD 영상을 취득하기 위한 많은 연구들이 수행되었다. 기존의 영상 생성 연구들은 주로 좁은 FoV(Field of View) 영상을 사용하여서 전체 장면 중 상당 부분이 소실된 영상에 대한 정보를 생성한다. 본 논문에서는 기존의 좁은 FoV 영상으로부터 360 도 전방향 RGBD 영상을 생성하는 기법을 제안한다. 오버랩 되지 않는 4 장의 소수 영상으로부터 전체 파노라마 영상에 대해서 상대적인 FoV 를 추정하고, 360 도 RGBD 영상을 동시에 생성하는 적대적 생성 신경망 기반의 영상 생성 네트워크이다. 360 도 영상의 특징을 반영하도록 설계하여서 개선된 성능을 보인다.
다수의 2차원 객체 영상으로부터 3차원 형상을 복원하는 방법은 컴퓨터 비젼 분야에서 널리 연구되고 있다. 복원된 3차원 형상의 정확도 개선을 위해서는 잡음 영향을 줄이거나 영상 프레임 수를 확보하는 것이 무엇보다 중요하다. 그렇지만 특징점 추정 시 잡음은 잠재적으로 내포되고, 관측행렬을 구성하는 영상 프레임 수는 특징점 추적 실패, 장애요소 또는 낮은 해상력 등에 의해 일반적으로 감소하게 된다. 그래서 잠음 환경 하에 손실된 특징점을 보다 정확히 보정하여 사용 가능한 영상 프레임 수를 확보하는 것이 필수적이다. 따라서 우리는 잡음 분포 하에서 기하학적 특성을 이용해 손실 특징점의 오차 거리와 방향을 직접 제어할 수 있는 분석적 접근방법을 제안한다. 제안한 방법의 우수성은 합성과 실제 객체에 대한 실험 결과를 통해서 검증한다.
디지털화 된 의료영상에서의 데이터 인증 및 변형 여부의 판별을 위해서 디지털 워터마킹을 사용한다. Fourier변환과 Log-Polar변환을 이용한 Fourier-Mellin기법은 영상의 RST변환에 불변한 특징을 가진다. 하지만 실질적인 구현을 위해서는 화소위치가 일치하지 않는 것에 따라 영상값을 보간해야 하는 것과 그에 따른 워터마크의 데이터 손실, 계산량 증가, 원영상의 화질 저하를 해결해야한다. Polar좌표 변환의 손실을 없애기 위해서 Look up table을 사용하였다. 진단이후, 의료영상의 ROI 영역을 중심으로 Polar좌표 변환과 Discrete fourier변환을 하였다. 주파수 진폭성분의 대칭성을 유지하면서, 가우시안 분포의 랜덤 벡터와 이진 영상을 워터마크로 삽입하여 다양한 조건 하에서의 결과를 관찰하였다.
최근 딥 러닝 기법의 하나인 합성곱 신경망(Convolutional Neural Network, CNN)은 영상 잡음(Noise) 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있지만 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있다. 본 논문에서는 웨이블릿 변환(Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크(Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크(Noise Extraction Subnetwork)를 이용하게 된다. 실험을 통해 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가인 PSNR(Peak Signal-to-Noise Ratio)와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.
대부분의 컬러 영상들은 코드북의 일부분만으로 표현할 수 있는 영상의 영역이 상당히 크므로 이러한 특징을 이용하는 효율적인 Reversible 워터마킹 기법을 제안한다. 팔레트(컬러맵) 영상에서의 워터마킹 기술에 대한 연구는 많이 있지만 Reversibility에 대한 관심은 상대적으로 낮았다. 제안하는 기법은 가상적으로 확장한 코드북에 의한 압축 영역에서 동작한다. 확장된 코드북은 높은 Payload 용량을 가진다. Reversibility를 구현하면서 왜곡(Distortion)과 삽입용량(Embedding capacity)사이의 절충점을 실험을 통해 보인다.
본 논문에서는 DCT영역에서 반복적 이진위상컴퓨터형성홀로그램을 이용한 디지털 영상 워터마킹 기술을 제안하였다. 워터마크로 주로 사용되는 랜덤 시퀸스 또는 로고와 같은 은닉영상 대신 은닉영상을 손실없이 재생할 수 있는 이진위상컴퓨터형성홀로그램을 생성하고, 이를 반복적으로 표현해서 워터마크로 사용한다. 그리고 이 워터마크를 호스트영상의 DCT 계수에 적절한 규칙을 통해 가중치를 부여하여 삽입한 후, IDCT한다. 워터마크의 추출은 워터마킹된 영상과 호스트영상을 DCT하고, 삽입시 적용한 규칙을 통해서 수행한다. 그리고 추출된 워터마크의 역푸리에 변환과 호스트영상에 삽입하기전의 워터마크를 역푸리에 변환하여 재생한 은닉영상과의 상관을 취함으로써 워터마크의 존재여부를 검증한다. 제안한 방법은 워터마크 삽입/추출시 반복되는 홀로그램정보를 활용하고, 이진 값으로 구성되어 있으므로 기존의 어떠한 워터마킹 기술보다 외부 공격에 견실한 특징을 가지고 있으며, 컴퓨터 시뮬레이션을 통해 그 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.