프레쳇 거리 손실함수를 이용한 RGBD 파노라마 영상 생성

김수지, 박인규

인하대학교 정보통신공학과

soojie@inha.edu, pik@inha.ac.kr

RGBD Panoramic Image Generation Using Frechet Distance Loss Function

Soo Jie Kim, In Kyu Park

Department of Information and Communication Engineering, Inha University

요 약

RGBD 영상은 다양한 3 차원 비전 연구에서 유용하게 사용되며 고품질 RGBD 영상을 취득하기 위한 많은 연구들이 수행되었다. 기존의 영상 생성 연구들은 주로 좁은 FoV(Field of View) 영상을 사용하여서 전체 장면 중 상당 부분이 소실된 영상에 대한 정보를 생성한다. 본 논문에서는 기존의 좁은 FoV 영상으로부터 360 도 전방향 RGBD 영상을 생성하는 기법을 제안한다. 오버랩 되지 않는 4 장의 소수 영상으로부터 전체 파노라마 영상에 대해서 상대적인 FoV 를 추정하고, 360 도 RGBD 영상을 동시에 생성하는 적대적 생성 신경망 기반의 영상 생성 네트워크이다. 360 도 영상의 특징을 반영하도록 설계하여서 개선된 성능을 보인다.

1. 서론

RGBD 영상은 3 차원 객체 인식, 장면 재구성 등 다양한 3 차원 비전 연구에 활용된다. 이에 따른 고품질 RGBD 영상 생성 연구가 진행되어 왔으나 대부분 좁은 FoV 영상을 활용하며, 도로영상과 같은 실외 데이터셋에 기반한다 [1,2]. 또한 360 도 영상을 생성하는 연구의 경우에 파노라마 영상 특성을 고려한 네트워크를 설계하여서 생성된 파노라마 영상의 왜곡을 줄이고자 하는 연구가 수행되었다. 하지만 대부분 전체 파노라마 영상을 입력으로 사용하거나, 센서 기반의 360 도 RGBD 영상을 생성하는 연구들이 수행되었다.

본 논문에서는 4 장의 좁은 FoV 영상에 대해서 360 도 RGBD 영상을 동시에 생성하는 적대적 생성 신경망 기반의 네트워크를 제안하여서 전체 파노라마에 대해서 상대적인 FoV 를 추정하고 이로부터 얻어진 부분 Equirectangular 영상에 대해서 전체 파노라마 영상을 생성하도록 하였다. 파노라마 생성 단계에서 두 모달리티의 특징을 공유하도록 네트워크를 구성하며, 360 도 영상의 특징을 반영한 목적함수를 적용하여서 정량적, 정성적으로 우수한 성능을 보인다.

그림 1. 제안하는 방법의 전체적인 흐름도

2. 파노라마 생성

먼저 4 개의 영상으로부터 전체 파노라마에 대해서 상대적인 FoV 를 추정하고[3] Equirectangular 영상으로 변환하여서 파노라마 생성 단계의 입력으로 사용한다.

파노라마 생성 네트워크는 U-Net 기반의 적대적 생성 신경망 네트워크이다. 훈련시에 적대적 손실함수로 LSGAN 을 사용하며 생성된 영상과 참값 영상 사이의 픽셀 손실 함수는 L1 손실함수를 사용한다. 또한 사실적인 영상 생성을 위해서 지각 손실 목적 함수로 사전 훈련된 VGG 네트워크를 사용한다.

360 도 영상 특징을 반영한 특징을 추출하기 위해서 제안하는 모델을 훈련하고 사전 훈련된 모델을 이용하여서 RGBD 특징이 공유된 모듈에서 잠재공간의 마지막 레이어의 특징 *flatent* 를 추출한다. 그런 다음 [4]에 따라서 longitudinal invariant 특징 *f'latent* 와 latitudinal equivariant 특징 *f''latent* 을 추출하고 Frechet Distance [5]를 측정하여서 손실함수로 사용하였다. Frechet Distance 손실함수는 훈련 중 0 번째 iteration 에서 측정된 값을 나누어서 정규화하여서 사용하였으며 500 개의 데이터셋 분포에 대해서 2000 Iteration 마다 한 번씩 값을 계산하여서 손실함수로 반영하였다.

각 RGBD 네트워크에서 생성된 영상에 대하여 입력 영상의 참값 영역을 제외한 나머지 부분에 해당하는 이진 마스크를 적용한 영상의 특징을 공유하며 가장 큰 클래스에 해당하는 마스크를 생성된 영상에 적용하고 각 RGBD 네트워크에서 공유하도록 하였다. 각 RGBD 네트워크의 레이어는 픽셀 합계를 수행하며 마지막 레이어 \mathbf{f}_s 는 각 네트워크의 마지막 블록에 채널 연결을 수행하여서 각 디코더에 전달된다. 제안하는 네트워크의 전체적인 프레임워크는 **그림 1**에서 도식화하였다.

3. 실험 결과

네트워크를 훈련 환경은 ADAM 옵티마이저를 사용하며, Learning rate 는 α = 0.0002, β₁ = 0.5, β₂ = 0.99, 배치 사이즈는 2 로 설정하고, NVIDIA RTX A6000 GPU 를 사용하여 훈련하였다.

총 21,600 개의 실내 데이터셋 Matterport3D[6], Stanford3D[7], SunCG[8]에서 깊이 영상을 기준으로 손상된 영역이 일정 값 이상에 해당하는 훈련에 부적절한 데이터셋 3,446 개를 제거하는 과정을 거치며, 총 18,154 개의 데이터셋에 대하여 훈련 데이터셋(80%), 테스트 데이터셋(20%)으로 나누어서 적용한다. Matterport3D[6], Stanford3D[7], SunCG[8] 데이터셋에 대해서 큐브맵 형식으로 변환하여 4 개의 면을 훈련에 사용할 수 있도록 데이터셋을 구축하였으며, 세 개의 데이터셋을 각각 따로 훈련하였다. 정량평가에서 생성 모델의 유사도를 위한 PSNR, SSIM 을 측정하여서 Frechet distance 손실함수를 사용하지 않은 네트워크와 비교하였다.

표 1 은 생성된 RGBD 영상의 PSNR 과 SSIM 평균을 나타낸다. 제안하는 Frechet distance 손실함수를 적용하지 않은 네트워크의 결과를 비교하였으며, 제안하는 네트워크에서 우수한 결과를 확인할 수 있다. 그림 2 는 제안하는 모델과 제안하는 모델에 대한 정성적인 결과이며, FoV 60 도에 대한 입력 영상의 결과이다.

표1. 생성된 파노라마 영상의 PS	SNR,SSIM 평균
---------------------	-------------

Meth	nod	Dataset	PSNR	SSIM
w/o Frechet distance	RGB	Matterport3D	17.6667	0.6705
		Stanford3D	18.2139	0.6748
		SunCG	21.7096	0.8072
	Depth	Matterport3D	26.1095	0.9294
		Stanford3D	25.4359	0.9185
		SunCG	28.4385	0.9418
w/ Frechet distance	RGB	Matterport3D	18.1325	0.6850
		Stanford3D	18.4782	0.6859
		SunCG	21.0893	0.8051
	Depth	Matterport3D	26.1831	0.9301
		Stanford3D	25.6019	0.9187
		SunCG	28.3960	0.9435

그림 2. 파노라마 생성 네트워크에 대한 정성적 평가 결과

5. 결론

본 논문에서는 소수의 영상으로부터 RGBD 영상을 동시에

생성하는 적대적 생성 신경망 기반 네트워크를 제안하였다. 두 모달리티의 특징을 공유한 생성 모델과 360 도 영상의 특징이 반영된 Frechet Distance 손실함수를 적용하여서 정량적, 정성적 결과를 통해서 개선된 성능을 보인다. 복잡한 장면을 재구성하는 분야와 3D 실내 환경 복원에서 사용될 수 있다.

감사의 글

이 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행한 연구임(2020-0-01389, 인공지능융합연구센터지원(인하대학교)). 이 논문은 삼성전자 미래 기술육성센터의 지원을 받아 수행한 연구임(과제번호 SRFC-IT1702-54).

참고문헌

- [1] Y. Wang, W. L. Chao, D.Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger, "Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving," Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Aug. 2019.
- [2] F. E. Wang, Y. H. Yeh, M. Sun, W. C. Chiu, and Y. H. Tsai, "LED2-Net: Monocular 360 Layout Estimation via Differentiable Depth Rendering," Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Apr. 2021.
- [3] J. S. Sumantri and I. K. Park, "360 Panorama synthesis from a sparse set of images with unknown field of view," Proc. IEEE Trans. on Computational Imaging, vol. 6, pp. 1179-1193, Jul. 2020.
- [4] C. O. W.J. Cho and K. Yoon, "Rgbd panorama synthesis using normal field-of-view cameras and mobile depth sensors in arbitrary configuration," Proc. The 33rd Workshop on Image Processing and Image Understanding, p1-11, 2021.
- [5] D. C. Dowson and B. V. Landau, "The frechet distance between ´ multivariate normal distributions," in Journal of Multivariate Analysis, 12:450-455, 1982.
- [6] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and Y. Zhang, "Matterport3D: Learning from RGB-D data in indoor environments," Proc. International Conference on 3D Vision, Sep. 2017.

- [7] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, "Joint 2D-3Dsemantic data for indoor scene understanding," arXiv preprint arXiv:1702.01105, Apr. 2017.
- [8] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser, "Semantic scene completion from a single depth image," Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2017.