• 제목/요약/키워드: 영상 점군

검색결과 49건 처리시간 0.025초

3차원 객체 복원을 위한 SIFT 특징점 가중치 기반 반복적 점군 정합 방법 (SIFT Weighting Based Iterative Closest Points Method in 3D Object Reconstruction)

  • 신동원;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.309-312
    • /
    • 2016
  • 최근 실세계에 존재하는 물체의 3차원 형상과 색상을 디지털화하는 3차원 객체 복원에 대한 관심이 날로 증가하고 있다. 3차원 객체 복원은 영상 획득, 영상 보정, 점군 획득, 반복적 점군 정합, 무리 조정, 3차원 모델 표현과 같은 단계를 거처 통합된 3차원 모델을 생성한다. 그 중 반복적 점군 정합 방법은 카메라 궤적의 초기 값을 획득하는 방법으로서 무리 조정 단계에서 전역 최적 값으로의 수렴을 보장하기 위해 중요한 단계이다. 기존의 반복적 점군 정합 (iterative closest points) 방법에서는 시간이 지남에 따라 누적된 궤적 오차 때문에 발생하는 객체 표류 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 색상 영상에서 SIFT 특징점을 획득하고 3차원 점군을 얻은 뒤 가중치를 부여함으로써 점 군 간의 더 정확한 정합을 수행한다. 실험결과에서 기존의 방법과 비교하여 제안하는 방법이 절대 궤적 오차 (absolute trajectory error)가 감소하는 것을 확인 했고 복원된 3차원 모델에서 객체 표류 현상이 줄어드는 것을 확인했다.

  • PDF

다시점 카메라로부터 획득된 깊이 및 컬러 영상을 이용한 실내환경의 파노라믹 3D 복원 (Panoramic 3D Reconstruction of an Indoor Scene Using Depth and Color Images Acquired from A Multi-view Camera)

  • 김세환;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.24-32
    • /
    • 2006
  • 본 논문에서는 다시점 카메라부터 획득된 부분적인 3D 점군을 사용하여 실내환경의 3D 복원을 위한 새로운 방법을 제안한다. 지금까지 다양한 양안차 추정 알고리즘이 제안되었으며, 이는 활용 가능한 깊이 영상이 다양함을 의미한다. 따라서, 본 논문에서는 일반화된 다시점 카메라를 이용하여 실내환경을 복원하는 방법을 다룬다. 첫 번째, 3D 점군들의 시간적 특성을 기반으로 변화량이 큰 3D 점들을 제거하고, 공간적 특성을 기반으로 주변의 3D 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 시점에서의 3D 점군을 동일한 영상 평면으로 투영하고, 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용하여 대응점을 찾는다. 그리고 대응점 간의 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 여러 시점에서 획득된 3D 점군과 한 쌍의 2D 영상을 동시에 이용하여 3D 점들의 위치를 세밀하게 조절함으로써 최종적인 3D 모델을 생성한다. 제안된 방법은 대응점을 2D 영상 평면에서 찾음으로써 계산의 복잡도를 줄였으며, 3D 데이터의 정밀도가 낮은 경우에도 효과적으로 동작한다. 또한, 다시점 카메라를 이용함으로써 수 시점에서의 깊이 영상과 컬러 영상만으로도 실내환경 3D 복원이 가능하다. 제안된 방법은 네비게이션 뿐만 아니라 상호작용을 위한 3D 모델 생성에 활용될 수 있다.

  • PDF

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Features)

  • 백재원;박순용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1000-1005
    • /
    • 2007
  • 본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.

  • PDF

3차원 점군데이터의 깊이 영상 변환 방법 및 하드웨어 구현 (Conversion Method of 3D Point Cloud to Depth Image and Its Hardware Implementation)

  • 장경훈;조기쁨;김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.2443-2450
    • /
    • 2014
  • 깊이 영상을 이용한 동작 인식 시스템에서는 효율적인 알고리즘 적용을 위하여 깊이 영상을 3차원 점군 데이터로 구성되는 실제 공간으로 변환하여 알고리즘을 적용한 후 투영공간으로 변환하여 출력한다. 하지만 변환 과정 중 반올림 오차와 적용되는 알고리즘에 의한 데이터 손실이 발생하게 된다. 본 논문에서는 3차원 점군 데이터에서 깊이 영상으로의 변환 시 반올림 오차와 영상의 크기 변화에 따른 데이터 손실이 발생하지 않는 효율적인 방법과 이를 하드웨어로 구현 하는 방법을 제안 하였다. 최종적으로 제안된 알고리즘은 OpenCV와 Window 프로그램을 사용하여 소프트웨어적으로 알고리즘을 검증하였고, Kinect를 사용하여 실시간으로 성능을 테스트하였다. 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx Zynq-7000 FPGA 보드에 탑재하여 검증하였다.

MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구 (Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV)

  • 최윤조;;홍승환;손홍규
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.453-464
    • /
    • 2019
  • 최근 3차원 공간정보에 대한 수요가 증가함에 따라 신속하고 정확한 데이터 구축의 중요성이 증대되어 왔다. 정밀한 3차원 데이터 구축이 가능한 LiDAR (Light Detection and Ranging) 데이터를 기준으로 UAV (Unmanned Aerial Vehicle) 영상을 정합하기 위한 연구가 다수 수행되어 왔으나, MMS (Mobile Mapping System)로부터 취득된 LiDAR 점군데이터의 반사강도 영상을 활용한 연구는 미흡한 실정이다. 따라서 본 연구에서는 MMS로부터 취득된 LiDAR 점군데이터를 반사영상으로 변환한 데이터와 UAV 영상 데이터의 정합을 위해 9가지의 특징점 기반매칭 기법을 비교·분석하였다. 분석 결과 SIFT (Scale Invariant Feature Transform) 기법을 적용하였을 때 안정적으로 높은 매칭 정확도를 확보할 수 있었으며, 다양한 도로 환경에서도 충분한 정합점을 추출할 수 있었다. 정합 정확도 분석 결과 SIFT 알고리즘을 적용한 경우 중복도가 낮으며 동일한 패턴이 반복되는 경우를 제외하고는 약 10픽셀 수준으로 정확도를 확보할 수 있었으며, UAV 영상 촬영 당시 UAV 자세에 따른 왜곡이 포함되어 있음을 감안할 때 합리적인 결과라고 할 수 있다. 따라서 본 연구의 분석 결과는 향후 LiDAR 점군데이터와 UAV 영상의 3차원 정합을 위한 기초연구로 활용될 수 있을 것으로 기대된다.

고해상도 DMCII 항공영상을 이용한 고품질 정사영상 제작 (High Quality Ortho-image Production Using the High Resolution DMCII Aerial Image)

  • 김종남;엄대용
    • 한국측량학회지
    • /
    • 제33권1호
    • /
    • pp.11-21
    • /
    • 2015
  • 정사영상은 DSM(Digital Surface Model; 수치표면모델)을 이용하여 항공영상의 왜곡과 기복변위 등으로 발생하게 되는 기하학적 변위를 제거함으로써 제작된다. 따라서 원영상의 해상도와 DSM의 정확도는 정사영상의 정확도에 큰 영향을 미치게 된다. 최근 제공되고 있는 DMCII250 항공영상은 GSD 5cm급 고해상도의 영상을 제공함으로써 고밀도 점군자료의 생성과 함께 정사영상의 품질 향상을 기대할 수 있을 것으로 예상된다. 이에 본 연구에서는 DMCII250 항공영상으로부터 고밀도의 점군자료를 추출하여 DSM을 제작하고 이를 이용하여 정사영상을 생성함으로써 고밀도 DSM 제공에 따른 고품질 정사영상의 제작 가능성과 그 정확도를 검토하고자 하였다. 연구결과 기존 수치지형도 또는 DSM정보를 이용하여 제작한 정사영상에 비하여 높은 정도의 위치정확도와 고품질의 정사영상의 확보가 가능함을 확인할 수 있었다.

칼라영상을 이용한 3차원 점군데이터 윤곽선 자동 검출 (Automatic Boundary Detection from 3D Cloud Points Using Color Image)

  • 김남운;노이주;정희석;정중연;정경훈;강동욱;김기두
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.141-142
    • /
    • 2008
  • 본 논문은 텍스처된 3차원 점군데이터를 효율적으로 모델링하는 방법을 제안한다. 지상라이다로부터 획득한 3차원 점군데이터는 많은 노이즈를 가지고 있으며 이로 인해 자동적인 모델링이 어렵다. 3차원 모델링에 있어서 메쉬를 생성해야 3차원 랜더링이 가능하지만 3차원 메쉬 생성은 노이즈에 취약하기 때문에 디자이너들이 수작업으로 노이즈를 제거해야만 한다. 하지만 노이즈 자제가 지상 라이다로부터 들어온 데이터이기 때문에 자동적인 노이즈 제거가 어렵다. 본 논문에서는 텍스처된 지상 라이다 데이터로부터 칼라 영상의 정보를 이용한 윤곽선 정보 검출 방법을 제안한다. 대부분의 건물과 같은 구조물에서 최 외곽은 같은 색의 정보를 가지고 있다. 최 외곽 칼라의 정보를 이용하여 칼라 정보의 변화를 제한하고, 유사 칼라 정보를 가지고 있는 픽셀만 얻어냄으로써 최외각 정보를 얻어낸다. 칼라 이미지를 이용만 필터링 된 점군데이터는 xy, xz, yz 각각의 평면에서 윤곽선 데이터를 가지며 이는 구조물에 대한 모델링의 속도를 빠르게 해준다.

  • PDF

강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합 실험 (Experiment for 3D Coregistration between Scanned Point Clouds of Building using Intensity and Distance Images)

  • 전민철;어양담;한동엽;강남기;편무욱
    • 대한원격탐사학회지
    • /
    • 제26권1호
    • /
    • pp.39-45
    • /
    • 2010
  • 본 연구는 지상라이다 자료의 점군간 자동정합을 위해 인접한 두 점군 자료와 함께 획득되는 2차원의 강도영상 자료로부터, 2개 영상에서 동시에 관측되는 특징점들을 이용하여 SIFT 알고리즘에 의해 공액점을 선정하였다. 또한 매칭 오류점 배제를 위해 RANSAC 알고리즘을 적용하여 정합 정확도 향상을 도모하였다. 두 점군간의 변환식 매개변수인 3차원 회전변환 각과 수직/수평 이동량을 계산, 그 결과를 기존 수작업에 의한 결과와 비교하였다. 건국대학교 이과대학 건물을 대상으로 실험한 결과, 자동매칭을 통한 변환매개변수와 수작업으로 한 변환매개변수의 차이는 X, Y, Z, 방향으로 각각 0.011m, 0.008m, 0.052m로서 자동정합 자료의 활용이 가능하다고 판단하였다.

하천 제방의 영상 점군에서 식생 점 제거 필터링 기법 비교 분석 (Comparative Analysis of Filtering Techniques for Vegetation Points Removal from Photogrammetric Point Clouds at the Stream Levee)

  • 박희성;이두한
    • Ecology and Resilient Infrastructure
    • /
    • 제8권4호
    • /
    • pp.233-244
    • /
    • 2021
  • 본 연구에서는 식생이 무성한 제방의 이상유무 점검을 위한 지상 LiDAR(Light Detection And Ranging) 측량의 적용성을 검토하였다. 지상 LiDAR 측량으로 생성된 제방의 영상 점군 자료에 색상필터 및 형태필터를 적용하여 각 기법별 정확성과 특성을 평가하였다. 임진강 제방의 영상 점군 자료를 이용하여 CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, ISL 등의 10가 식생 제거 필터를 적용하였다. 결과에 의하면 정확성은 ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, CIVE 등의 순서로 나타났다. 색상필터는 지반 구분에 한계를 보였으며 풀꽃을 지반으로 구분하기도 했다. 형태필터는 지반 구분 정확도가 우수하나 거석을 식생으로 인식하는 한계도 보였다. 전체적으로 형태필터가 우수하나 계산 시간에서 10 배 정도 소요되었다. 정확도와 속도 향상을 위해서 형태필터와 색상필터를 결합한 복합필터에 대한 연구가 필요하다.

깊이 및 컬러 영상을 이용한 실내환경의 3D 복원 (3D Reconstruction of an Indoor Scene Using Depth and Color Images)

  • 김세환;우운택
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 논문에서는 다시점 카메라를 이용하여 실내환경의 3D 복원을 위한 새로운 방법을 제안한다. 지금까지 다양한 양안차 추정 알고리즘이 제안되었으며, 이는 활용 가능한 깊이 영상이 다양함을 의미한다. 따라서 본 논문에서는 일반화된 다시점 카메라로 여러 방향에서 획득된 3D 점군을 이용한 실내환경 복원 방법을 다룬다. 첫 번째, 3D 점군들의 시간적 특성을 기반으로 변화량이 큰 3D 점들을 제거하고, 공간적 특성을 기반으로 주변의 3D 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 시점에서의 3D 점군을 동일한 영상평면으로 투영하고 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용하여 대응점을 찾는다. 그리고 대응점간의 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 여러 시점에서 획득된 3D 점군과 한 쌍의 2D 영상을 동시에 이용하여 3D 점들의 위치를 세밀하게 조절함으로써 최종적인 3D 모델을 생성한다. 제안된 방법은 대응점을 2D 영상 평면에서 찾음으로써 계산의 복잡도를 줄였으며, 3D 데이터의 정밀도가 낮은 경우에도 주변화소와의 상관관계를 이용함으로써 효과적으로 동작한다. 또한, 다시점 카메라를 이용함으로써 수 시점에서의 깊이 영상과 컬러 영상만으로도 실내환경에 대한 3D 복원이 가능하다. 제안된 방법은 네비게이션 뿐만 아니라 상호작용을 위한 가상 환경 생성 및 Mediated Reality (MR) 응용 분야에 활용될 수 있다.

  • PDF