• Title/Summary/Keyword: 영상 변위

Search Result 392, Processing Time 0.03 seconds

Orthophoto Image Mapping from NGI′s Digital Topographic Map (수치지도를 이용한 정사사진지도제작)

  • 김감래;김욱남;이호남
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.207-217
    • /
    • 2002
  • 수치정사사진지도를 제작하기 위한 기반 자료로 스캐닝한 수치항공사진영상과 항공사진의 왜곡 보정을 위한 표정, DEM의 추출과 편집 및 편위 수정에 이르기까지 다양한 처리절차가 필요하다. 또한 영상과 벡티 자료의 중첩을 통해 생선한 영상지도의 편집과 지도제작 작업에는 다양한 미적 요소가 필요하다. 본 연구에서는 수치항공사진 영상을 이용하여, 영상에 내포하는 기하학적 변위를 3차원 모델링 결과와 수치표고모델을 이용하여 소거하고, 수치정사사진을 제작한 후에, 1/5,000 수치지도에서 필요한 레이어와 중첩시킨 수치정사사진지도를 제작하여 그 정확도를 분석하였으며, 각 처리 단계별 문제점의 분석과 개선방안을 제시하였다.

  • PDF

Development of Data Glove using Image Processing (영상처리를 이용한 데이터 글러브의 구현)

  • 이일로;엄성은;안병하
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2291-2294
    • /
    • 2003
  • 본 논문에서는 손목이나 손바닥 아래에 부착된 PC카메라와 두 개의 광원을 이용한 데이터 글러브 구현 방법을 제안한다 기존의 데이터 글러브 방식은 글러브를 손에 착용하여야 하는 단점이 있으며 영상처리 기반의 HCI 방법 또한 공간상에 고정된 카메라를 이용함으로써 웨어러블 컴퓨팅이나 모바일 환경하에서는 사용할 수 없다. 이 문제를 해결하기 위해 본 논문은 착용 가능한 한대의 카메라와 두 개의 평행 광을 사용하여 손 모양을 입력하는 방법을 제안하였다. 또한 손 영상을 제외한 배경영상을 이용하여 손의 변위를 얻어낼 수 있는 방법을 제안한다. 제안된 방법을 구현한 "BareHand 1.0"과 테스트 결과에 대해서도 논하였다.

  • PDF

Design and Verification of 3D Digital Image Correlation Systems for Measurement of Large Object Displacement Using Stereo Camera (대면적 대상물 변위계측을 위한 스테레오 카메라 3차원 DIC 시스템 기초설계 및 검증에 관한 연구)

  • Ko, Younghun;Seo, Seunghwan;Lim, Hyunsung;Jin, Tailie;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.1-12
    • /
    • 2020
  • Digital Image Correlation is a well-established method for displacements, strains and shape measurements of engineering objects. Stereo-camera 3D Digital Image Correlation (3D-DIC) systems have been developed to match the specific requirements for measurements posed by material and mechanical industries. Although DIC method provides the capabilities of scaling a field-of-view(FOV), dimensions of Geotechnical structure objects in many cases are too big to be measured with DIC based on a single camera pair. It can be the most important issue with applying 3D DIC to the measurement of Geotechnical structures. In this paper, We were present stereo vision conditions in a 3D DIC system that can be measured for large FOV(30×20m) and high precisions(z-displacement 0.5mm) of the ground objects with Stereo-camera DIC systems.

A New EDGE-BASED Stereo Correspondence Method for Snake-Based Object Segmentation (스네이크 기반 객체 추출을 위한 새로운 에지 기반 스테레오 일치화 방법)

  • Park, Min-Gyu;Alattar, Ashraf;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.269-274
    • /
    • 2008
  • In this paper, we propose a new stereo correspondence method for generating excellent external energy for snake-based object segmentation methods in stereo images. Our method first generates an edge-based disparity map by performing stereo correspondence between multi-level edge maps of the stereo image pair. Only edges of similar strength are considered for matching. To filter the disparity map for edges of the object of interest, the method estimates the object's disparity value by matching the pattern of edges of the region of interest in the left image against candidate patterns in the right image. The filtered edge map is then used to generate external energy for the snake. The proposed method has been tested on two snake models and results show a noticeable enhancement on performance of the snake when compared with other methods.

Comparison of Observation Performance of Urban Displacement Using ALOS-1 L-band PALSAR and COSMO-SkyMed X-band SAR Time Series Images (ALOS-1 L-band PALSAR와 COSMO-SkyMed X-band SAR 시계열 영상을 이용한 도심지 변위관측 성능 비교 분석)

  • Choi, Jung-Hyun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.283-293
    • /
    • 2018
  • We applied PSInSAR to two SAR satellite (ALOS-1 and COSMO-SkyMed) images and analyzed the difference in displacement observation performance according to sensor characteristics. The building layer was extracted from the digital topographic map, and the PS extracted from the SAR image was classified into two groups(building structure and ground surface) for density analysis. The density of PS extracted from the research area was $0.023point/m^2$ for ALOS-1 PALSAR and $0.1point/m^2$ for COSMO-SkyMed, more than 4 times PS was extracted compared to ALOS-1. In addition, not only the PS density in the building, but also the density in the ground were greatly increased. The average displacement velocity of ALOS-1 PALSAR is within ${\pm}1cm/yr$, while for COSMO-SkyMed it is within ${\pm}0.3cm/yr$. Although it is difficult to make quantitative comparisons because it does not use the data for the same period, it can be said that the accuracy of X-band SAR system is very high compared to the L-band. In consideration of PS observation density and observation accuracy of displacement, X-band SAR data is very effective in research where it is important to acquire useful signals from the ground surface, such as ground subsidence and sinkhole.

Mapping Precise Two-dimensional Surface Deformation on Kilauea Volcano, Hawaii using ALOS2 PALSAR2 Spotlight SAR Interferometry (ALOS-2 PALSAR-2 Spotlight 영상의 위성레이더 간섭기법을 활용한 킬라우에아 화산의 정밀 2차원 지표변위 매핑)

  • Hong, Seong-Jae;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1235-1249
    • /
    • 2019
  • Kilauea Volcano is one of the most active volcano in the world. In this study, we used the ALOS-2 PALSAR-2 satellite imagery to measure the surface deformation occurring near the summit of the Kilauea volcano from 2015 to 2017. In order to measure two-dimensional surface deformation, interferometric synthetic aperture radar (InSAR) and multiple aperture SAR interferometry (MAI) methods were performed using two interferometric pairs. To improve the precision of 2D measurement, we compared root-mean-squared deviation (RMSD) of the difference of measurement value as we change the effective antenna length and normalized squint value, which are factors that can affect the measurement performance of the MAI method. Through the compare, the values of the factors, which can measure deformation most precisely, were selected. After select optimal values of the factors, the RMSD values of the difference of the MAI measurement were decreased from 4.07 cm to 2.05 cm. In each interferograms, the maximum deformation in line-of-sight direction is -28.6 cm and -27.3 cm, respectively, and the maximum deformation in the along-track direction is 20.2 cm and 20.8 cm, in the opposite direction is -24.9 cm and -24.3 cm, respectively. After stacking the two interferograms, two-dimensional surface deformation mapping was performed, and a maximum surface deformation of approximately 30.4 cm was measured in the northwest direction. In addition, large deformation of more than 20 cm were measured in all directions. The measurement results show that the risk of eruption activity is increasing in Kilauea Volcano. The measurements of the surface deformation of Kilauea volcano from 2015 to 2017 are expected to be helpful for the study of the eruption activity of Kilauea volcano in the future.

Wave Generation and Its Effect on Lesion Detection in Sonoelastography: Theory and Simulation Study (음향 탄성영상법에서 연조직 내 파동 발생과 병변 검출의 특성: 이론 및 시뮬레이션 연구)

  • 박정만;권성재;정목근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.282-293
    • /
    • 2005
  • Sonoelastography is an ultrasound-based technique that visualizes the elastic properties of soft tissues by measuring the tissue motion generated by an externally applied vibration. In this paper. the characteristics of wave generation in soft tissues due to an acoustic vibrator are studied. The effects of modal patterns on the detectability of lesions such as tumors in senoelastography are also investigated These are accomplished by analyzing the vibration patterns calculated using theoretical equations and finite element methods in halt space, infinite plate. and finite-sized tissue. A finite-width source generates shear waves with large amplitude Propagating in specific directions. and the generation characteristics depend both on the width and frequency of the vibrator. as well as the distance from it. It is shown in a finite-sized tissue that the lesion detection in displacement images is quit dependent on the modal patterns inside tissue. In contrast it Is also found that the lesion detectability in strain images is less dependent on the modal Patterns and is much better than that in displacement images.

Stereo Images-Based Real-time Object Tracking Using Active Feature Model (능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적)

  • Park, Min-Gyu;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.109-116
    • /
    • 2009
  • In this thesis, an object tracking method based on the active feature model and the optical flow in stereo images is proposed. We acquired the translation information of object of interest and the features of object by utilizing the geometric information and depth of stereo images. Tracking performance is improved for the occlude object with this information by predicting the movement information of features of the occlude object. Rigid and non-rigid objects are experimented. From the result of experiment, the OOI can be real-time tracked from complicate back ground. Besides, we got the improved result of object tracking in any occlusion state, no matter what it is rigid or non-rigid object.

A Bulge Detection Model in Cultural Asset images using Ensemble of Deep Features (심층 특징들의 앙상블을 사용한 목조 문화재 영상에서의 배부름 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.129-131
    • /
    • 2021
  • 본 논문에서는 심층 특징 앙상블을 사용하여 목조 문화재의 변위 현상 중 하나인 배부름 현상을 감지할 수 있는 모델을 제안한다. 우선 총 4개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 4개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 심층 특징 앙상블 기법을 사용한 모델이 앙상블 기법을 사용하지 않은 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로 부터 우리가 제안한 방법이 목재 문화재의 배부름 현상에 대한 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

An Epipolar Rectification for Object Segmentation (객체분할을 위한 에피폴라 Rectification)

  • Jeong, Seung-Do;Kang, Sung-Suk;CHo, Jung-Won;Choi, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.83-91
    • /
    • 2004
  • An epipolar rectification is the process of transforming the epipolar geometry of a pair of images into a canonical form. This is accomplished by applying a homography to each image that maps the epipole to a predetermined point. In this process, rectified images transformed by homographies must be satisfied with the epipolar constraint. These homographies are not unique, however, we find out homographies that are suited to system's purpose by means of an additive constraint. Since the rectified image pair be a stereo image pair, we are able to find the disparity efficiently. Therefore, we are able to estimate the three-dimensional information of objects within an image and apply this information to object segmentation. This paper proposes a rectification method for object segmentation and applies the rectification result to the object segmentation. Using color and relative continuity of disparity for the object segmentation, the drawbacks of previous segmentation method, which are that the object is segmented to several region because of having different color information or another object is merged into one because of having similar color information, are complemented. Experimental result shows that the disparity of result image of proposed rectification method have continuity about unique object. Therefore we have confirmed that our rectification method is suitable to the object segmentation.