• Title/Summary/Keyword: 영상 대비 향상

Search Result 319, Processing Time 0.025 seconds

A Comparative Study on Image Enhancement Methods for Low Contrast Images (저대비 영상을 위한 영상향상 기법들의 비교연구)

  • Kim, Yong-Soo;Kim, Nam-Jin;Lee, Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.467-472
    • /
    • 2005
  • The principal objective of enhancement methods is to process an image so that the output image is more suitable than the original image lot a specific application. Images taken in the night can be low-contrast images because of poor environments. In this paper, we compared the performance of Image Contrast Enhancement Technique Using Clustering Algorithm(ICECA) with those of color adjustment methods such as Histogram Equalization(HE), Brightness Preserving Bi-Histogram Equalization(BBHE), and the Multi-Scale Refiner(MSR). We compared these methods by applying the image enhancement methods to a set of diverse images.

Image Enhancement using Intensity Deviation of Boundary Regions (경계 영역의 밝기 편차를 이용한 영상의 화질 향상 기법)

  • Hwang, Jae-Min;Kwon, Oh-Seol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.140-149
    • /
    • 2014
  • Image enhancement has become an important area of study with the recent development of hi-fidelity devices, such as UHD displays. While conventional methods are able to enhance the image contrast and detail, this sometimes results in contrast reversion in boundary region. Therefore, this paper proposes the use of multi-layers and intensity deviation in boundary areas to enhance the perceived image quality. First, the image contrast of individual blocks is enhanced using multi-layers with different sizes. After calculating the block boundaries, weights are then determined based on the intensity deviation and used to enhance the image detail. Experiments with several test images confirm that the proposed algorithm is superior that image contrast and detail to conventional methods.

A Image Contrast Enhancement by Clustering of Image Histogram (영상의 히스토그램 군집화에 의한 영상 대비 향상)

  • Hong, Seok-Keun;Lee, Ki-Hwan;Cho, Seok-Je
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.239-244
    • /
    • 2009
  • Image contrast enhancement has an important role in image processing applications. Conventional contrast enhancement techniques, histogram stretching and histogram equalization, and many methods based on histogram equalization often fail to produce satisfactory results for broad variety of low-contrast images. So, this paper proposes a new image contrast enhancement method based on the clustering method. The number of cluster of histogram is found by analysing the histogram of original image. The histogram components is classified using K-means algorithm. And then these histogram components are performed histogram stretching and histogram equalization selectively by comparing cluster range with pixel rate of cluster. From the expremental results, the proposed method was more effective than conventional contrast enhancement techniques.

  • PDF

A Contrast Enhancement Method using the Contrast Measure in the Laplacian Pyramid for Digital Mammogram (디지털 맘모그램을 위한 라플라시안 피라미드에서 대비 척도를 이용한 대비 향상 방법)

  • Jeon, Geum-Sang;Lee, Won-Chang;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.

A Image Contrast Enhancement Using Clustering of Image Histogram (히스토그램 군집화를 이용한 영상 대비 향상)

  • Hong, Seok-Keun;Park, Joon-Woo;Kang, Byeong-Jo;Choi, Yu-Na;Cho, Seok-Je
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.379-380
    • /
    • 2009
  • 히스토그램 스트레칭이나 히스토그램 균등화 등 기존 대비 향상 기법들과 히스토그램 균등화 기반의 수많은 방법들은 저대비에 소수의 화소들이 넓게 퍼져 있는 영상에 대해서 만족할만한 결과를 내지 못한다. 따라서 본 논문은 군집화 방법을 이용한 새로운 영상 대비 향상 기법을 제안한다. 히스토그램의 군집수는 원영상의 히스토그램을 분석하여 얻을 수 있다. 히스토그램 성분들을 K-means 알고리즘을 이용하여 군집화한다. 그리고 히스토그램 군집 범위와 군집의 화소수 비율을 비교하여 히스토그램 스트레칭과 히스토그램 균등화를 선택적으로 적용한다. 실험 결과로부터 제안한 방법이 기존의 대비 향상 기법들보다 더 효과적임을 확인할 수 있었다.

Histogram compression equalization method that has been deformed for the distribution of brightness and balanced improvement of the image contrast (영상의 명암대비 향상 및 균형적인 밝기 분포를 위한 변형된 히스토그램 압축 평활화 기법)

  • Kim, Jong-in;Lee, Jae-won;Hong, Sung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.820-823
    • /
    • 2013
  • Recently, the need for improving image quality of the image is increasing in various fields smartphones, cameras, and portable devices. How a significant impact on improving image quality of the image is a contrast enhancement, as a representative method to improve the contrast, the process of histogram equalization, various studies have been made. However, the method of histogram equalization general, by readjusting the only brightness, when the image histogram is biased to one side, due to changes in the excess brightness, distortions such as blocking phenomenon occurs. In this paper, we provide a contrast enhancement techniques through the compression and re-distribution of a well-balanced average brightness of the histogram distribution. By be differential compression histogram based on the histogram frequency in order to suppress the supersaturation phenomenon due to the increase in contrast ratio excessive repositioning well-balanced histogram lopsided, the proposed method, the balance of the brightness of the image I want to to take. The experimental results, the image brightness is balanced manner compared to conventional methods, the proposed method showed a good effect to improve the contrast without supersaturation phenomenon as compared with the conventional methods.

  • PDF

An Image Contrast Enhancement Technique Using an Adaptive Fuzzy Clustering Algorithm (적응적 퍼지 클러스터링 알고리듬을 이용한 영상 대비 향상 기법)

  • Lee, Guem-Boon;Kim, Yong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.527-530
    • /
    • 2001
  • 영상이 시각적인 해석을 위해 처리될 때, 퍼지 이론이 영상 대비 강화에 많이 사용되고 있다. 적응적 퍼지 클러스터링 기법을 사용하여 자동적으로 영상의 명암도에 대한 다중 클래스를 형성하고 여기에 각각의 명암도를 속성 공간으로 전환시키는 퍼지함수를 사용하여 각 픽셀의 명암도에 부합하는 퍼지 소속도를 구한다. 영상 대비 향상을 위하여 구한 퍼지 소속도에 강화 연산자를 반복적 적용한다. 본 논문에서 제안한 방법을 히스토그램 평활화와 비교하기 위해 흑백 영상에 적용하였다.

  • PDF

A Study on the Image Enhancement Method of Digital Mammogram in the Wavelet Domain (웨이블렛 영역에서 디지털 맘모그램의 영상향상 방법에 관한 연구)

  • Jeon, Geum-Sang;Jang, Boo-Hwan;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2012
  • Digital mammogram is effective for detecting the micro-calcification that is early symptom of breast cancer. In the digital mammogram, many image processing techniques have been studied for accurate diagnosis and efficient treatment of micro-calcification lesion. The wavelet based multi-scale method was mainly used to enhance the image contrast. This paper presents an advanced mammography enhancement method which is based both on the brightness and the contrast enhancement in the wavelet domain. The proposed method normalizes a dynamic range using histogram of the image. The brightness is enhanced by modifying coefficients of low frequency components, and the contrast is enhanced by coefficients of high frequency component based on the multi-scale contrast measure. The experiment results show that the proposed method yields better performance of the image enhancement over the existing methods.

Multiple-Frame Correlation Analysis to Improve the Accuracy of a Far-Infrared Surface Image Velocimeter (원적외선 표면영상유속계의 정확도 향상을 위한 다중 프레임 상호상관분석)

  • Yu, Kwonkyu;Bae, In Hyuk;Hwang, Jeong Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.76-76
    • /
    • 2017
  • 표면영상유속계는 홍수시 하천의 표면유속을 손쉽게 측정할 수 있는 매우 효율적인 장비이다. 특히 원적외선 카메라를 이용할 경우 주야간에 관계없이 사용할 수 있어, 그 유용성이 크게 높아진다. 다만, 원적외선 카메라는 그 특성상 해상도가 일반 비디오 카메라에 비해 현저하게 떨어지는 단점이 있다. 본 연구는 이러한 해상도가 낮은 원적외선 영상을 이용하여 보다 효율적으로 표면유속을 산정하는 새로운 기법을 구현하는 것이다. 해상도가 낮다는 것은 영상 내에 추적을 위한 추적자가 잘 나타나지 않는다는 의미이다. 이처럼 적절한 추적자가 영상내에 적을 경우에는 정확한 표면유속을 산정하기 곤란하다. 본 연구에서는 이 문제를 해결하기 위해 두 가지 방안을 조합하였다. 기존의 상호상관분석에서는 동영상의 연속된 프레임 두 매를 이용하였다. 본 연구에서는 연속된 여러 매의 프레임을 병합하여 한 매의 병합영상으로 만들고, 이러한 병합영상 두 매를 상호상관분석하는 방법을 개발하였다. 이 경우 영상을 병합하기 때문에 한 병합영상내에 충분한 수의 추적자가 들어올 가능성이 그만큼 높아지게 된다. 정확도 향상을 위한 두 번째 방안은, 돗수분포 평활화를 이용하는 것이다. 돗수분포 평활화 기법은 대비가 낮은 영상의 대비를 높이는 방법이다. 이렇게 대비를 높여서, 영상내 추적자의 존재를 더욱 확실하게 만들 수 있다. 이 두 가지 방법을 병용하여 새로 원적외선 표면영상유속계를 구현하고, 이를 기존의 분석이 어려웠던 동영상에 적용한 결과 그 분석 정확도가 현저하게 높아지는 것을 확인할 수 있었다.

  • PDF

Image Contrast Enhancement Technique Using Clustering Algorithm (클러스터링 알고리듬을 이용한 영상 대비 향상 기법)

  • Kim, Nam-Jin;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.310-315
    • /
    • 2004
  • Image taken in the night can be low-contrast images because of poor environment and image transmission. We propose an algorithm that improves the acquired low-contrast image. MPEG-2 separates chrominance and illuminance, and compresses respectively because human vision is more sensitive to luminance. We extracted illumination and used K-means algorithm to find a proper crossover point automatically. We used K-means algorithm in the viewpoint that the problem of crossover point selection can be considered as the two-category classification problem. We divided an image into two subimages using the crossover point, and applied the histogram equalization method respectively. We used the index of fuzziness to evaluate the degree of improvement. We compare the results of the proposed method with those of other methods.