• Title/Summary/Keyword: 영상 기반 거리 측정

Search Result 169, Processing Time 0.027 seconds

Face Recognition Under Ubiquitous Environments (유비쿼터스 환경을 이용한 얼굴인식)

  • Go, Hyoun-Joo;Kim, Hyung-Bae;Yang, Dong-Hwa;Park, Jang-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2004
  • This paper propose a facial recognition method based on an ubiquitous computing that is one of next generation intelligence technology fields. The facial images are acquired by a mobile device so-called cellular phone camera. We consider a mobile security using facial feature extraction and recognition process. Facial recognition is performed by the PCA and fuzzy LDA algorithm. Applying the discrete wavelet based on multi-resolution analysis, we compress the image data for mobile system environment. Euclidean metric is applied to measure the similarity among acquired features and then obtain the recognition rate. Finally we use the mobile equipment to show the efficiency of method. From various experiments, we find that our proposed method shows better results, even though the resolution of mobile camera is lower than conventional camera.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

Development of a Forest Fire Tracking and GIS Mapping Base on Live Streaming (실시간 영상 기반 산불 추적 및 매핑기법 개발)

  • Cho, In-Je;Kim, Gyou-Beom;Park, Beom-Sun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.123-127
    • /
    • 2020
  • In order to obtain the overall fire line information of medium and large forest fires at night, the ground control system was developed to determine whether forest fires occurred through real-time video clips and to calculate the location of the forest fires determined using the location of drones, angle information of video cameras, and altitude information on the map to reduce the time required for regular video matches obtained after the completion of the mission. To verify the reliability of the developed function, the error distance of the aiming position information of the flight altitude star and the image camera was measured, and the location information within the reliable range was displayed on the map. As the function developed in this paper allows real-time identification of multiple locations of forest fires, it is expected that overall fire line information for the establishment of forest fire extinguishing measures will be obtained more quickly.

Intelligent CCTV for Port Safety, "Smart Eye" (항만 안전을 위한 지능형 CCTV, "Smart Eye")

  • Baek, Seung-Ho;Ji, Yeong-Il;Choi, Han-Saem
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.1056-1058
    • /
    • 2022
  • 본 연구는 항만에서 안전 수칙을 위반하여 발생하는 사고 및 이상행동을 실시간 탐지를 수행한 후 위험 상황을 관리자가 신속하고 정확하게 대처할 수 있도록 지원하는 지능형 CCTV, Smart Eye를 제안한다. Smart Eye는 컴퓨터 비전(Computer Vision) 기반의 다양한 객체 탐지(Object Detection) 모델과 행동 인식(Action Recognition) 모델을 통해 낙하 및 전도사고, 안전 수칙 미준수 인원, 폭력적인 행동을 보이는 인원을 복합적으로 판단하며, 객체 추적(Object Tracking), 관심 영역(Region of Interest), 객체 간의 거리 측정 알고리즘을 구현하여, 제한구역 접근, 침입, 배회, 안전 보호구 미착용 인원 그리고 화재 및 충돌사고 위험도를 측정한다. 해당 연구를 통한 자동화된 24시간 감시체계는 실시간 영상 데이터 분석 및 판단 처리 과정을 거친 후 각 장소에서 수집된 데이터를 관리자에게 신속히 전달하고 항만 내 통합관제센터에 접목함으로써 효율적인 관리 및 운영할 수 있게 하는 '지능형 인프라'를 구축할 수 있다. 이러한 체계는 곧 스마트 항만 시스템 도입에 이바지할 수 있을 것으로 기대된다.

A Study of CBIR(Content-based Image Retrieval) Computer-aided Diagnosis System of Breast Ultrasound Images using Similarity Measures of Distance (거리 기반 유사도 측정을 통한 유방 초음파 영상의 내용 기반 검색 컴퓨터 보조 진단 시스템에 관한 연구)

  • Kim, Min-jeong;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1272-1277
    • /
    • 2017
  • To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.

FPGA Implementation of CORDIC-based Phase Calculator for Depth Image Extraction (Depth Image 추출용 CORDIC 기반 위상 연산기의 FPGA 구현)

  • Koo, Jung-youn;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.279-282
    • /
    • 2012
  • In this paper, a hardware architecture of phase calculator for 3D image processing is proposed. The designed phase calculator, which adopts a pipelined architecture to improve throughput, performs arctangent operation using vectoring mode of CORDIC algorithm. Fixed-point MATLAB modeling and simulations are carried out to determine the optimized bit-widths and number of iteration. Phase calculator designed in Verilog HDL is verified by emulating the restoration of virtual 3D data using MATLAB/Simulink and FPGA-in-the-loop verification.

  • PDF

Internal Defect Position Analysis of a Multi-Layer Chip Using Lock-in Infrared Microscopy (위상잠금 적외선 현미경 관찰법을 이용한 다층구조 칩의 내부결함 위치 분석)

  • Kim, Seon-Jin;Lee, Kye-Sung;Hur, Hwan;Lee, Haksun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Kim, Ghiseok;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2015
  • An ultra-precise infrared microscope consisting of a high-resolution infrared objective lens and infrared sensors is utilized successfully to obtain location information on the plane and depth of local heat sources causing defects in a semiconductor device. In this study, multi-layer semiconductor chips are analyzed for the positional information of heat sources by using a lock-in infrared microscope. Optimal conditions such as focal position, integration time, current and lock-in frequency for measuring the accurate depth of the heat sources are studied by lock-in thermography. The location indicated by the results of the depth estimate, according to the change in distance between the infrared objective lens and the specimen is analyzed under these optimal conditions.

Efficient Traffic Lights Detection and Signal Recognition in Moving Image (동영상에서 교통 신호등 위치 검출 및 신호인식 기법)

  • Oh, Seong;Kim, Jin-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.717-719
    • /
    • 2015
  • The research and development of the unmanned vehicle is being carried out actively in domestic and foreign countries. The research is being carried out to provide various services so that the weakness of system such as conventional 2D-based navigation systems can be supplemented and the driving can be safer. This paper suggests the method that enables real-time video processing in more efficient way by realizing the location detection and signal recognition technique of traffic signals in video. In order to overcome the limit of conventional methods that have a difficulty in analyzing the signal as it is sensitive to brightness change, the proposed method realizes the program that grasps the depth data in front of the vehicle using video processing, analyzes the signal by detecting traffic signal and estimates color components of traffic signal in front and the distance between traffic signal and the vehicle.

  • PDF

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

Sketch-based 3D object retrieval using Wasserstein Center Loss (Wasserstein Center 손실을 이용한 스케치 기반 3차원 물체 검색)

  • Ji, Myunggeun;Chun, Junchul;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.91-99
    • /
    • 2018
  • Sketch-based 3D object retrieval is a convenient way to search for various 3D data using human-drawn sketches as query. In this paper, we propose a new method of using Sketch CNN, Wasserstein CNN and Wasserstein center loss for sketch-based 3D object search. Specifically, Wasserstein center loss is a method of learning the center of each object category and reducing the Wasserstein distance between center and features of the same category. To do this, the proposed 3D object retrieval is performed as follows. Firstly, Wasserstein CNN extracts 2D images taken from various directions of 3D object using CNN, and extracts features of 3D data by computing the Wasserstein barycenters of features of each image. Secondly, the features of the sketch are extracted using a separate Sketch CNN. Finally, we learn the features of the extracted 3D object and the features of the sketch using the proposed Wasserstein center loss. In order to demonstrate the superiority of the proposed method, we evaluated two sets of benchmark data sets, SHREC 13 and SHREC 14, and the proposed method shows better performance in all conventional metrics compared to the state of the art methods.