• Title/Summary/Keyword: 영상유도

Search Result 901, Processing Time 0.023 seconds

Optimal Non-Uniform Resampling Algorithm (최적 비정규 리샘플링 알고리즘)

  • Sin, Geon-Sik;Lee, Hak-Mu;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.50-55
    • /
    • 2002
  • The standard approach of image resampling is to fit the original image with continuous model and resample the function at a desired rate. We used the B-spline function as the continuous model because it oscillates less than the others. The main purpose of this paper is the derivation of a nonuniform optimal resampling algorithm. To derive it, needing approximation can be computed in three steps: 1) determining the I-spline coefficients by matrix inverse process, 2) obtaining the transformed-spline coefficients by the optimal resampling algorithm derived from the orthogonal projection theorem, 3) converting of the result back into the signal domain by indirect B-spline transformation. With these methods, we can use B-spline in the non-uniform resampling, which is proved to be a good kernel in uniform resampling, and can also verify the applicability from our experiments.

Sign system design for rapid evacuation in earthquake evacuation situations (지진발생 상황에서 신속한 대피를 돕는 사인시스템 디자인)

  • Yoo, Ga-hee;Oh, Kwang-myung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.107-112
    • /
    • 2019
  • Most of the sign systems involved in evacuation are not useful in seismic situations where people have to evacuate with their heads bowed, given that they are at the top of the wall. Based on the analysis and understanding of seismic evacuation situations, this study proposes a sign system as a measure for rapid seismic evacuation. First, understand the seismic situation based on the video analysis of the earthquake evacuation situation. Second, the need for a sign system to help secure evacuation in earthquake situations was derived. Third, the on-site survey examined the suitability of the Sine system installed in Korea as an escape facility for the earthquake evacuation situation. Based on the video analysis and on-site survey, it was concluded that the installation of escape guidance lamps alone could not induce rapid evacuation in the earthquake situation. In this study, a sign system is proposed to help the use of doors by installing a sign system near an emergency exit light.

Improvement of Processing Speed for UAV Attitude Information Estimation Using ROI and Parallel Processing

  • Ha, Seok-Wun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.155-161
    • /
    • 2021
  • Recently, researches for military purposes such as precision tracking and mission completion using UAVs have been actively conducted. In particular, if the posture information of the leading UAV is estimated and the mission UAV uses this information to follow in stealth and complete its mission, the speed of the posture information estimation of the guide UAV must be processed in real time. Until recently, research has been conducted to accurately estimate the posture information of the leading UAV using image processing and Kalman filters, but there has been a problem in processing speed due to the sequential processing of the processing process. Therefore, in this study we propose a way to improve processing speed by applying methods that the image processing area is limited to the ROI area including the object, not the entire area, and the continuous processing is distributed to OpenMP-based multi-threads and processed in parallel with thread synchronization to estimate attitude information. Based on the experimental results, it was confirmed that real-time processing is possible by improving the processing speed by more than 45% compared to the basic processing, and thus the possibility of completing the mission can be increased by improving the tracking and estimating speed of the mission UAV.

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

Development and Utility Evaluation of Portable Respiration Training Device for Image-guided Stereotactic Body Radiation Therapy (SBRT) (영상유도 체부정위방사선 치료시 호흡동조를 위한 휴대형 호흡연습장치의 개발 및 유용성 평가)

  • Hwang, Seon Bung;Park, Mun Kyu;Park, Seung Woo;Cho, Yu Ra;Lee, Dong Han;Jung, Hai Jo;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2014
  • This study developed a portable respiratory training device to improve breathing stability, which is an important element in using the CyberKnife Synchrony respiratory tracking device, one of the typical Stereotactic Radiation Therapy (SRT) devices. It produced an interface for users to be able to select one of two displays, a graph type and a bar type, supported an auditory system that helps them expect next respiration by improving a sense of rhythm of their respiratory period, and provided comfortable respiratory inducement. By targeting 5 applicants and applying individual respiratory period detected through a self-developed program, it acquired signal data of 'guide respiration' that induces breathing through signal data gained from 'free respiration' and an auditory system, and evaluated the usability by comparing deviation average values of respiratory period and respiratory amplitude. It could be identified that respiratory period decreased $55.74{\pm}0.14%$ compared to free respiration, and respiratory amplitude decreased $28.12{\pm}0.10%$ compared to free respiration, which confirmed the consistency and stability of respiratory. SBRT, developed based on these results, using the portable respiratory training device, for liver cancer or lung cancer, is evaluated to be able to help reduce delayed treatment time due to respiratory instability and improve treatment accuracy, and if it could be applied to developing respiratory training applications targeting an android-based portable device in the future, even use convenience and economic efficiency are expected.

An Experimental Method for the Scatter Correction of MV Images Using Scatter to Primary Ratios (SPRs) (산란선 대 일차선비(SPR)를 이용한 MV 영상의 산란 보정을 위한 실험적 방법)

  • Jeon, Hosang;Park, Dahl;Lee, Jayeong;Nam, Jiho;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Lee, Ju Hye;Kim, Dongwon
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.143-150
    • /
    • 2014
  • In general radiotherapy, mega-voltage (MV) x-ray images are widely used as the unique method to verify radio-therapeutic fields. But, the image quality of MV images is much lower than that of kilo-voltage x-ray images due to scatter interactions. Since 1990s, studies for the scatter correction have performed with digital-based MV imaging systems. In this study, a novel method for the scatter correction is suggested using scatter to primary ratio (SPR), instead of conventional methods such as digital image processing or scatter kernel calculations. We measured two MV images with and without a solid water phantom describing a patient body with given imaging conditions, and calculated un-attenuated ratios. Then, we obtained SPR distributions for the scatter correction. For experimental validation, a line-pair (LP) phantom using several Al bars and a clinical pelvis MV image was used. As the result, scatter signals of the LP phantom image were successfully reduced so that original density distribution of the phantom was restored. Moreover, image contrast values increased after SPR correction at all ROIs of the clinical image. The mean value of increases was 48%. The SPR correction method suggested in this study has high reliability because it is based on actually measured data. Also, this method can be easily adopted in clinics without additional cost. We expected that the SPR correction can be an effective method to improve the quality of MV image guided radiotherapy.

Changes in Volume Dose by Treatment Plan According to pCT and CBCT in Image-guided Radiation Therapy for Prostate Cancer (전립선암 영상유도방사선치료 시 pCT와 CBCT에 따른 치료계획별 체적선량의 변화)

  • Won, Young Jin;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.209-214
    • /
    • 2018
  • The results of CBCT was obtained using image guided radiation therapy for radiation therapy in 5 prostate cancer patients. Using these results, we compared and evaluated the dose changes according to the treatment plan depending on the volume and position of bladder, rectum, and prostate. The 28 images of CBCT were acquired using On-Board Imaging device before radiotherapy. After the outline of bladder, rectum, and PTV, pCT images and CBCT images for radiotherapy were treated respectively. The volume of the bladder was increased by 105.6% and decreased by 45.2%. The volume of the rectum was increased by 30.5% and decreased by 20.3%. Prostate volume was increased by 6.3% and decreased by 12.3%. The mean dose of the rectum was higher in the CBCT than in the pCT, and V40 (equivalent to 40 Gy) of the bladder showed a reduction in all treatment regimens in the CBCT than in the pCT. Conformity treatment and homogeneity index of PTV showed better results in all treatment regimens using pCT than CBCT. It was found that the dose distribution of the pelvic internal organs varied greatly according to the patient 's condition and pretreatment.

A Novel Luminance Adaptation Effect Model in Pixel Intensity Domain for Image Quality Assessment: Theory and Application (영상 화질 측정을 위한 픽셀 강도 영역의 새로운 광적응 효과 모델: 이론 및 적용)

  • Bae, Sung-Ho;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.78-80
    • /
    • 2015
  • 광적응(Luminance Adaptation; LA) 효과는 영상의 배경 밝기에 따른 왜곡에 대한 시각 인지 민감도가 달라지는 특성을 의미한다. 기존 영상 화질 측정(Image Quality Assessment; IQA) 방법들은 베버의 법칙(Weber' s law) 모델을 이용하여 LA 효과를 IQA 방법에 반영해왔다. 그러나, 이러한 IQA 방법들에 있어서 베버의 법칙 기반 LA 효과 모델은 다음 두 가지 이유로 부정확하게 동작한다: (i) 전통적인 베버의 법칙 모델은 실제 광도(luminance)에 대한 인지 민감도 응답값을 정확히 반영할 수 없다는 것이 밝혀졌다, (ii) 대부분 IQA 방법들은 픽셀 강도 영역에서 계산되지만, 베버의 법칙과 같은 LA 효과 모델들은 광도 영역에서 개발되었다. 따라서 광도와 픽셀 강도간 비선형 관계로 인해 IQA 방법에 반영된 베버의 법칙 기반 LA 효과 모델들은 부정확하게 동작한다. 이 문제를 해결하기 위해, 본 논문에서 처음으로 픽셀 강도 영역에서의 LA 모델을 이론적으로 유도한다. 본 논문에서 제안하는 픽셀 강도 영역에서의 LA 효과 모델은 감마 교정 함수(Gamma correction function)와 광도 영역에서의 LA 효과 모델인 제곱-법칙(power-law) 모델을 기반으로 하는 테일러 급수 확장 근사화를 통해 유도된다. 제안하는 픽셀 강도 영역 LA 효과 모델의 효과를 검증하기 위해, 제안하는 LA 효과 모델을 PSNR 에 도입하여 광범위한 실험을 수행한다. 실험 결과, 제안하는 LA 효과 모델 기반 PSNR 은 PSNR 및 베버의 법칙 기반 PSNR 대비 괄목할 만한 주관적 화질 예측 성능 향상을 보였다.

  • PDF

Study of Acoustic Streaming at Resonance by Longitudinal Ultrasonic Vibration Using Particle Imaging Velocimetry (입자 영상 유속계를 이용한 초음파 수직진동에 의해 유도된 공진상태에서의 음향유동에 관한 연구)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.340-352
    • /
    • 2004
  • Acoustic streaming induced by the microscopic longitudinal ultrasonic vibration at 28.5 ㎑ is visualized between the quiescent glass plate and ultrasonic vibrator by particle imaging velocimetry(PIV) using laser. To investigate the augmentation of air flow velocity of acoustic streaming. the velocity variations of air streaming between the stationary plate and ultrasonic vibrator are measured in real-time. It is experimentally investigated that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary p1ate results in the variations of the average velocity fields as a outcome of the bulk air flow caused by the ultrasonic vibration. In addition. maximum acoustic streaming velocity exists at resonant gap. 18mm that is one of the resonant gaps (H=18, 24, 30, 36㎜) at which resonance occurs. The variation of the local maximum turbulent intensity with axial direction appear to reveal the value of 8%∼70% dependent upon the gap between the quiescent glass plate and ultrasonic vibrator. Shearstress is also maximized at the center region of the vibrator and the vorticity is also maximum and minimum in the neighborhood of the center of the vibrator at which the local maximum turbulent intensity and shear stress exist.

Evaluation of Internal Defect of Composite Laminates Using A Novel Hybrid Laser Generation/Air-Coupled Detection Ultrasonic System (레이저 발생 초음파와 공기 정합 수신 탐촉자를 이용한 복합재료 적층판의 내부 박리 결함 평가)

  • Lee, Joon-Hyun;Lee, Seung-Joon;Byun, Joon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • Ultrasonic C-scan technique is one of very popular techniques being used for detection of flaws in polymer matrix composite(PMC). However, the application of this technique is very limited for evaluation of defects in PMC fabricated by the automated fiber placement process. The purpose of this study is to develop a novel ultrasonic hybrid system based on nondestructive and non-contact ultrasonic techniques for evaluation of delamination in carbon/epoxy and carbon/PPS composite laminates. It was shown that the newly developed ultrasonic hybrid system based on dual air-coupled pitch-catch technique with ultrasonic scattering reflection concept could provide excellent image with higher resolution of delamination in PMC compared with the conventional pitch-catch method. It is expected that this ultrasonic hybrid technique can be applied for on-line inspection of flaws in PMC during the fabrication process.