We analyzed image factors to determine the characteristic factors that need for intelligent replenishment system of the auto film processor. We processed the serial 300 sheets of radiographic films of chest phantom without replenishment of developing and fixation replenisher. We took the digital data by using film digitizer which scaned the films and automatically summed up the pixel values of the films. We analyzed characteristic curves, average gradients and relative speeds of individual film using densitometer and step densitometry. We also evaluated the pH of developer, fixer, and washer fluid with digital pH meter. Fixer residual rate and washing effect were measured by densitometer using the reagent methods. There was no significant reduction of the digital density numbers of the serial films without replenishment of developer and fixer. The average gradients were gradually decreased by 0.02 and relative speeds were also gradually decreased by 6.96% relative to initial standard step-densitometric measurement. The pHs of developer and fixer were reflected the inactivation of each fluid. The fixer residual rates and washing effects after processing each 25 sheets of films were in the normal range. We suggest that the digital data are not reliable due to limitation of the hardware and software of the film digitizer. We conclude that average gradient and relative speed which mean the film's contrast and sensitivity respectively are reliable factors for determining the need for the replenishment of the auto film processor. We need more study of simpler equations and programming for more intelligent replenishment system of the auto film processor.
탄성파토모그래피는 고해상의 자료분석을 필요로 하는 환경이나 토목 등 공학적 응용분야에서 지하구조를 결정하기 위해 널리 사용되는 방법이다. 지금까지의 탄성파토모그래피는 대부분 주시역산에 의존해 왔으나 최근에는 파형정보를 이용하는 역산기법들이 활발히 연구되고 있다. 본 연구에서는 이러한 파형정보를 이용하여 음파 매질에서의 이차원 전파형 역산 알고리듬을 개발하였다. 전파형 역산은 Born역산의 약산란장 가정이나 주시역산의 고 주파수 가정이 필요 없는,분해능이 가장 좋은 방법이다. 그러나 초기추정값이 실제 모델과 많이 다를 경우 국부 최소값에 빠진다는 단점이 있다. 본 연구에서는 주시 역산을 통해 배경값을 추정하고 이를 초기추정 값으로 주어 전 파형 역산을 수행하는 알고리듬을 개발하였다. 본 알고리듬을 인공탄성파자료에 적용한 결과, 주시 역산 결과를 전파형 역산의 초기치로 사용할 경우 오차의 수렴속도가 매우 빠르고 분해능이 뛰어난 영상을 제공함을 확인할 수 있었다. 이는 주시역산을 통한 배경값 추정이 전파형 역산의 국부 최소값 문제와 계산 시간의 문제를 효과적으로 해결할 수 있는 방안임을 시사한다. 또한 축소모형실험자료에 대하여 본 알고리듬을 적용한 결과 재구성된 속도구조가 실제 모형과 잘 일치함을 알 수 있었고, 이를 통하여 현장자료에 대한 적용가능성을 확인하였다.
컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.
2018년 4월 말부터 감지되기 시작한 킬라우에아 화산의 최근 마그마 분화 활동은, 5월과 6월에 걸쳐 용암의 분출과 함께 급격한 지표 변형을 발생시켰다. 킬라우에아 정상부에 위치한 Halema'uma'u 분화구에서는 용암호의 수위가 빠르게 하강하여 대규모 지반 침하 및 지반 붕괴가 나타났으며, GPS와 경사계의 기록을 통해 약 2미터 가량의 변화를 감지할 수 있었다. 이 연구에서는 단 기간에 큰 변화를 보인 킬라우에아 분화 활동의 초기과정에 대해 다중 시기 COSMO-SkyMed SAR 영상을 이용한 시계열 지표변위 분석을 수행하고자 하였다. 전체 관측기간에 대해 측정된 최대의 지표 변위는 위성의 관측방향으로 약 -1.5미터이며, 입사각을 고려하여 수직변위로 변환할 때 약 -1.9미터의 침하를 나타낸다. 또한 대부분의 지표 변위는 분화 직후인 5월 초에서 6월말 사이에 발생하며, 7월부터는 안정기에 들어선 것을 확인할 수 있다. 시계열 지표변위를 통해 마그마 소스 모델링을 실시한 결과, 마그마 챔버가 지표로부터 2-3 km 사이에 위치하는 것으로 산출되었으며, 마그마 소스의 중심 위치는 남서부 방향으로 이동하는 것으로 관측되었다. 이러한 마그마 모델의 시계열 변화는 편향된 관측자료를 통한 초기 결과이므로 이후의 연구에서 정밀한 3차원 관측을 이용한 보완이 필요할 것으로 보여진다.
전 세계적으로 지구온난화현상이 심화되고 있으며, 특히 우리나라의 경우 급격한 산업 발전 등으로 인해 도시화가 진행되면서 도시열섬현상까지 발생되고 있다. 이렇게 도시의 온도가 상승하게 되면 주거 생활의 쾌적성 및 냉방부하와 같은 문제 등을 야기한다. 본 연구에서는 이러한 문제를 줄이기 위해 지붕 색상에 따른 쿨루프 성능 평가를 진행하였으며, 기존의 평지붕 축소 모형, 손잡이 형태의 열화상 카메라 또는 레이저 온도계를 이용하지 않고, 실제 건물과 UAV에 열적외선 카메라를 장착하여 원격탐사 기법으로 옥상 색상 (흰색, 회색, 초록색, 청색, 갈색, 검은색)에 따른 표면 온도를 취득하였다. 그 결과 흰색을 적용한 표면 온도가 다른 색상보다 11도에서 20도 낮게 나타났으며, 에어컨의 실내 온도와 디지털 온도계의 실내 온도 또한 흰색의 색상이 다른 색상보다 약 1.5도에서 4.4도, 약 1.5도에서 3.5도 낮게 측정되었다. 이를 통해 흰색이 쿨루프 성능이 가장 좋음을 확인할 수 있었으며, UAV와 열적외선 카메라를 통해 기존 다른 연구에서 사용했던 방법보다 신속하고, 편리하게 쿨루프 성능 평가가 가능함을 확인할 수 있었다.
광학 문자 인식(OCR)은 텍스트를 포함한 이미지에서 텍스트 영역을 인식하고 이로부터 텍스트를 추출하는 기술이다. 전체 텍스트 데이터 중 상당히 많은 텍스트 정보가 이미지에 포함되어 있기 때문에 OCR은 데이터 분석 분야에 있어 중요한 전처리 단계를 담당한다. 대부분의 OCR 엔진이, 흰 바탕의 검정 글씨의 단순한 형태를 가진 이미지와 같은, 텍스트와 배경의 구분이 뚜렷한 저 복잡도 이미지에 대해서는 높은 인식률을 보이는 반면, 텍스트와 배경의 구분이 뚜렷하지 않은 고 복잡도 이미지에 대해서는 저조한 인식률을 보이기 때문에, 인식률 개선을 위해 입력 이미지를 OCR 엔진이 처리하기 용이한 이미지로 변형하는 전처리 작업이 필요하게 된다. 따라서 본 논문에서는 OCR 엔진의 정확성 증대를 위해 텍스트 라인별로 이미지를 분리하고, 영상처리 기법 기반의 CLAHE 모듈과 Two-step 모듈을 병렬적으로 수행하여 텍스트와 배경 영역을 효율적으로 분리한 후 텍스트를 인식한다. 이어서 두 모듈의 결과 텍스트에 대하여 N-gram방법과 Hunspell 사전을 결합한 알고리즘으로 인식률을 비교하여 가장 높은 인식률의 결과 텍스트를 최종 결과물로 선정하는 방법론을 제안한다. 대표적인 OCR 엔진인 Tesseract와 Abbyy와의 다양한 비교 실험을 통해 본 연구에서 제안하는 모듈이 복잡한 배경을 가진 이미지에서 가장 정확한 텍스트 인식률을 보임을 보였다.
최근 공중 전투체계 기술들이 발전함에 따라 대공방어 시스템의 발전이 요구되고 있다. 대공 방어 시스템의 운용개념에 있어, 표적에 적합한 무장을 선택하는 것은 제한된 대공 전력을 사용하여 위협체에 대해 효율적으로 대응한다는 측면에서 체계에 요구되는 능력 중 하나이다. 비행 위협체의 식별에 있어 많은 부분이 운용자의 육안 식별에 의존하는데 고속으로 기동하고 원거리에 위치한 비행체를 육안으로 판별하는 것은 많은 한계가 있다. 뿐만 아니라, 현대 전장에서 무인화 및 지능화된 무기체계의 수요가 증가함에 따라 운용자의 육안 식별 대신 체계가 자동으로 비행체를 식별하고 분류하는 기술의 개발이 필수적이다. 영상자료를 수집해 딥러닝 기반의 모델을 이용하여 무기체계를 식별한 사례로는 전차와 함정 등이 있지만 비행체의 식별에 대한 연구는 아직 많이 부족한 상황이다. 따라서 본 논문에서는 합성곱 신경망 모델을 이용하여 전투기, 헬기, 드론을 분류하는 모델을 제시하고 제시하는 모델의 성능을 분석한다. 본 논문에서 제시하는 모델은 시험세트에 대해 95% 이상의 정확도를 보이고, precision 0.9579, recall 0.9558, F1-socre 0.9568의 값을 나타내는 것을 확인할 수 있다.
피에조콘 관입시험의 장점은 연속적인 데이터의 취득이 보장되며 결국 대상지반의 신뢰성 있는 분석이 가능하다는 점이다. 따라서 지난 수십년간 국내외에서 콘 관입시험결과로부터 흙분류를 수행하는 많은 연구가 진행되었으며 차트나 도표 등의 형태로 흙분류 방법들이 제안되었다. 그러나 대부분의 차트 또는 방법들은 한국을 제외한 세계 각국의 자료들을 바탕으로 제안되어 국내 지반의 적용성에 대한 검증이 이루어져야 한다. 뿐만 아니라 기존 방법들에서는 사용된 입력자료에 따라 흙분류 결과가 상이한 경우가 있어 적용과 판단에 어려움이 있다. 그러나 불행히도 이러한 차트 형태로 제안된 기존 도표의 경우 지역성 등이 반영되어 수정 또는 보완이 필요하나 수정에 어려움이 있거나 거의 불가능하다. 이에 본 연구에서는 국내 17개 현장에서 수행된 피에조콘 관입시험결과와 채취된 시료에 대한 주상도 및 흙분류결과를 바탕으로 클러스터링 기법과 뉴로-퍼지 이론을 이용한 흙분류 모델을 제안하였다. 제안된 모델을 검증하기 위해 모델 학습 시 사용되지 않는 새로운 피에조콘 관입시험 데이터에 대한 흙분류 결과를 실제 시추결과와 비교하였다. 또한 기존의 소프트컴퓨팅 모델과 Robertson 방법에 의한 흙분류 결과와 제안된 모델의 흙분류 결과를 비교하여 제안된 모델의 효율성을 검토하였다.
그라운드-롤(ground roll)은 육상 탄성파 탐사 자료에서 가장 흔하게 나타나는 일관성 잡음(coherent noise)이며 탐사를 통해 얻고자 하는 반사 이벤트 신호보다 훨씬 큰 진폭을 가지고 있다. 따라서 탄성파 자료 처리에서 그라운드-롤 제거는 매우 중요하고 필수적인 과정이다. 그라운드-롤 제거를 위해 주파수-파수 필터링, 커브릿(curvelet) 변환 등 여러 제거 기술이 개발되어 왔으나 제거 성능과 효율성을 개선하기 위한 방법에 대한 수요는 여전히 존재한다. 최근에는 영상처리 분야에서 개발된 딥러닝 기법들을 활용하여 탄성파 자료의 그라운드-롤을 제거하고자 하는 연구도 다양하게 수행되고 있다. 이 논문에서는 그라운드-롤 제거를 위해 CNN (convolutional neural network) 또는 cGAN (conditional generative adversarial network)을 기반으로 하는 세가지 모델(DnCNN (De-noiseCNN), pix2pix, CycleGAN)을 적용한 연구들을 소개하고 수치 예제를 통해 상세히 설명하였다. 알고리듬 비교를 위해 동일한 현장에서 취득한 송신원 모음을 훈련 자료와 테스트 자료로 나누어 모델을 학습하고, 모델 성능을 평가하였다. 이러한 딥러닝 모델은 현장자료를 사용하여 훈련할 때, 그라운드-롤이 제거된 자료가 필요하므로 주파수-파수 필터링으로 그라운드-롤을 제거하여 정답자료로 사용하였다. 딥러닝 모델의 성능 평가 및 훈련 결과 비교는 정답 자료와의 유사성을 기본으로 상관계수와 SSIM (structural similarity index measure)과 같은 정량적 지표를 활용하였다. 결과적으로 DnCNN 모델이 가장 좋은 성능을 보였으며, 다른 모델들도 그라운드-롤 제거에 활용될 수 있음을 확인하였다.
최근에 활발히 적용되고 있는 머신러닝 기반 탄성파 내삽 기법들은 대부분 모음 자료를 2차원 영상화 하여 빠짐을 채우는 방법으로 하는 훈련(training)-추론(inference) 전략에 기초하므로 완벽히 채워진 다수의 모음자료가 훈련을 위해 필요하게 된다. 이 연구는 이와는 달리 트레이스 기반 내삽을 수행하는 내삽 기술의 훈련-추론 전략을 기본으로, 불규칙한 빠짐이 있는 현장자료 만을 이용하여 훈련-추론을 모두 수행할 수 있는 머신러닝을 이용한 트레이스 기반 불규칙한 빠짐의 내삽 기술을 제시하였다. 이 연구에서는 불규칙한 빠짐이 있는 자료를 훈련과 추론에 체계적으로 사용하는 최대 연속빠짐 간격에 따라 정해지는 네트워크를 구성하는 방법 및 훈련하는 방법을 기술하였다. 또한, 서호주 Exmouth Sub-basin 지역의 Vincent 유전에서 얻어진 시간 참반사 보정된 탄성파 자료에 개발된 방법을 적용한 후, 예측 결과를 전통적인 내삽 방법의 결과와 비교 및 분석하였다. 신호대잡음비나 구조유사성과 같은 정량적인 지표를 통해 두 방법 모두 내삽 성능이 높은 것을 확인하였으며, 모든 주파수 대역에서도 골고루 좋은 결과를 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.