• Title/Summary/Keyword: 영상변화 탐지

Search Result 418, Processing Time 0.023 seconds

A Study on Object-based Change Detection Using Aerial LiDAR Data (항공 LiDAR 데이터를 이용한 객체 기반의 변화탐지 연구)

  • Jeong, Ji-Yeon;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Jae-Wook
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.95-100
    • /
    • 2008
  • 3차원으로 구성되어 있는 실세계를 보다 효과적이고 신속하게 모니터링하기 위해서는 변화된 지역의 정확한 위치정보 획득과 변화 결과의 빠른 도출을 위한 자동화 방안이 필요하다. 일반적으로 변화탐지를 위해 사용되어 온 항공사진이나 위성영상은 자료 획득에 있어 날씨와 같은 자연환경의 영향을 많이 받으며, 자동으로 변화탐지를 수행하는데 많은 문제점을 안고 있다. 반면에 항공 LiDAR 시스템은 영상시스템과는 달리 날씨 등에 영향을 상대적으로 적게 받으며, 지형지물에 대한 3차원 좌표 정보를 직접 획득하기 때문에 자동으로 처리하기에 매우 효율적이다. 본 연구에서는 항공 LiDAR 데이터만을 이용하여 도시지역의 시공간적 변화를 자동으로 탐지하는 방법을 연구 하였다. 변화탐지의 대상이 도시지역이므로 객체를 기반으로 다양한 변수를 사용하여 변화탐지를 수행하였다. 연구에 사용된 데이터는 서로 다른 시기에 획득된 항공 LiDAR 데이터이며, 두 데이터간의 변화탐지를 위해 먼저 상호정합을 수행하였으며, 개별 객체를 추출하기 위해 필터링과 Grouping 과정을 수행하였다. 마지막으로 Grouping된 객체를 대상으로 모양, 면적, 높이 변화를 비교하여 변화를 탐지하였다. 객체의 외곽선과 내부 영역의 모양을 표현하는 형상계수를 사용하므로 수평방향의 객체에 대한 기하학적인 모양 변화를 탐지할 수 있었으며, 객체의 높이값을 비교함으로써 수직방향으로의 변화도 탐지할 수 있었다. 본 연구에서 수행한 객체 기반의 변화탐지 방법은 91.67%의 전체 정확도를 획득하였다.

  • PDF

Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A (자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가)

  • Lee, Seung-Min;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.975-988
    • /
    • 2020
  • Change detection is the process of identifying changes by observing the multi-temporal images at different times, and it is an important technique in remote sensing using satellite images. Among the change detection methods, the unsupervised change detection technique has the advantage of extracting rapidly the change area as a binary image. However, it is difficult to understand the changing pattern of land cover in binary images. This study used grid points generated from seamless digital map to evaluate the satellite image change detection results. The land cover change results were extracted using multi-temporal KOMPSAT-3A (K3A) data taken by Gimje Free Trade Zone and change detection algorithm used Spectral Angle Mapper (SAM). Change detection results were presented as binary images using the methods Otsu, Kittler, Kapur, and Tsai among the automated threshold selection algorithms. To consider the seasonal change of vegetation in the change detection process, we used the threshold of Differenced Normalized Difference Vegetation Index (dNDVI) through the probability density function. The experimental results showed the accuracy of the Otsu and Kapur was the highest at 58.16%, and the accuracy improved to 85.47% when the seasonal effects were removed through dNDVI. The algorithm generated based on this research is considered to be an effective method for accuracy assessment and identifying changes pattern when applied to unsupervised change detection.

Analytic Techniques for Change Detection using Landsat (Landast 영상을 이용한 변화탐지 분석 기법 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Suh, Yong-Cheol;Kim, Ji-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Techniques for change detection using satellite images enable efficient detection of natural and artificial changes in use of land through multi-phase images. As for change detection, different results are made based on methods of calibration of satellite images, types of input data, and techniques in change analysis. Thus, an analytic technique that is appropriate to objectives of a study shall be applied as results are different based on diverse conditions even when an identical satellite and an identical image are used for change detection. In this study, Normalized Difference Vegetation Index (NDVI) and Principal Component Analysis (PCA) were conducted after geometric calibration of satellite images which went through absolute and relative radiometric calibrations and change detection analysis was conducted using Image Difference (ID) and Image Rationing (IR). As a result, ID-NDVI showed excellent accuracy in change detection related to vegetation. ID-PCA showed 90% of accuracy in all areas. IR-NDVI had 90% of accuracy while it was 70% and below as for paddies and dry fields${\rightarrow}$grassland. IR-PCA had excellent change detection over all areas.

  • PDF

A Case Study of Amplitude-Based Change Detection Methods Using Synthetic Aperture Radar Images (위성 레이더 영상을 활용한 강도 기반 변화탐지기술 활용 사례연구)

  • Seongjae Hong;Sungho Chae;Kwanyoung Oh;Heein Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1791-1799
    • /
    • 2023
  • The Korea Aerospace Research Institute is responsible for supplying and supporting the utilization of imagery data from the Arirang satellite series for organizations affiliated with the Government Satellite Information Application Consultation. Most of them primarily utilize optical imagery, and there is a relative lack of utilization of Synthetic Aperture Radar (SAR) imagery. In this paper, as part of supporting the use of SAR images, we investigated SAR intensity-based change detection algorithms and their use cases that have been researched to determine SAR intensity-based change detection algorithms to be developed in the future. As a result of the research, we found that various algorithms utilizing intensity difference, correlation coefficients, histograms, or polarimetric information have been researched by numerous researchers to detect and analyze change pixels and the applications of change detection algorithms have been studied in various fields such as a city, flood, forest fire, and vegetation. This study will serve as a reference for the development of SAR change detection algorithms, intended for utilization in the Government Satellite Information Application Consultation.

Unsupervised Change Detection of Hyperspectral images Using Range Average and Maximum Distance Methods (구간평균 기법과 직선으로부터의 최대거리를 이용한 초분광영상의 무감독변화탐지)

  • Kim, Dae-Sung;Kim, Yong-Il;Pyeon, Mu-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • Thresholding is important step for detecting binary change/non-change information in the unsupervised change detection. This study proposes new unsupervised change detection method using Hyperion hyperspectral images, which are expected with data increased demand. A graph is drawn with applying the range average method for the result value through pixel-based similarity measurement, and thresholding value is decided at the maximum distance point from a straight line. The proposed method is assessed in comparison with expectation-maximization algorithm, coner method, Otsu's method using synthetic images and Hyperion hyperspectral images. Throughout the results, we validated that the proposed method can be applied simply and had similar or better performance than the other methods.

Optimal Polarization Combination Analysis for SAR Image-Based Hydrographic Detection (SAR 영상 기반 수체탐지를 위한 최적 편파 조합 분석)

  • Sungwoo Lee;Wanyub Kim;Seongkeun Cho;Minha Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.359-359
    • /
    • 2023
  • 최근 기후변화로 인한 홍수 및 가뭄과 같은 자연재해가 증가함에 따라 이를 선제적으로 탐지 및 예방할 수 있는 해결책에 대한 필요성이 증가하고 있다. 이러한 수재해를 예방하기 위해서 하천, 저수지 등 가용수자원의 지속적인 모니터링은 필수적이다. SAR 위성 영상의 경우 주야간 및 기상상황에 상관없이 지속적인 수체 탐지가 가능하다. 일반적으로 SAR 기반 수체 탐지 시 송수신 방향이 동일한 편파(co-polarized) 영상을 사용한다. 하지만 co-polarized 영상의 경우 바람 및 강우에 민감하게 반응하여 수체 미탐지의 가능성이 존재한다. 한편 송수신 방향이 서로 다른 편파(cross-polarized) 영상은 강우 및 바람의 영향에 민감하지 않지만 식생에 민감하게 반응하여 수체의 오탐지율이 높다는 단점이 존재한다. 이에 SAR 영상의 편파 특성에 따라 수체 탐지의 정확도 차이가 발생하여 최적의 편파 영상 조합을 구성하는 것이 중요하다. 본 연구에서는 Sentinel-1 SAR 위성의 VV, VH, VV+VH 편파 영상과 머신러닝 알고리즘 중 하나인 SVM (support vector machine)을 활용하여 수체탐지를 수행하였다. 편파 영상 조합별 수체 탐지 결과의 검증을 위하여 혼동행렬 (confusion matrix) 기반 평가지수를 사용하였다. 각각의 수체탐지 결과의 비교 및 분석을 통하여 SAR 기반 수체 탐지를 위한 최적의 밴드 조합을 도출하였다. 본 연구결과를 바탕으로 차후 높은 시공간 해상도를 가진 SAR 영상의 활용이 가능하다면 수재해 및 수자원 관리의 효율성을 높일 수 있을 것으로 기대된다.

  • PDF

Detection of Urban Expansion and Surface Temperature Change using Landsat Satellite Imagery (Landsat 위성영상을 이용한 도시확장 및 지표온도 변화 탐지)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.59-65
    • /
    • 2005
  • It is very important to detect land cover/land use change from the past and to use it for future urban plan. This paper investigated the application of Landsat satellite imagery for detecting urban growth and assessing its impact on surface temperature in the region. Land cover/land use change detection was carried out by using 30m resolution Landsat satellite images and hierarchial approach was introduced to detect more detail change on the changing area through high resolution aerial photos. Also, surface temperature according to land cover/land use was calculated from Landsat TM thermal infrared data and compared with real temperature to analyze the relationship between urban expansion and surface temperature. As a result, the urban expansion has raised surface radiant temperature in the urbanized area. The method using remote sensing data based on GIS was found to be effective in monitoring and analysing urban growth and in evaluating urbanization impact on surface temperature.

  • PDF

Change Detection of Urban Development over Large Area using KOMPSAT Optical Imagery (KOMPSAT 광학영상을 이용한 광범위지역의 도시개발 변화탐지)

  • Han, Youkyung;Kim, Taeheon;Han, Soohee;Song, Jeongheon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1223-1232
    • /
    • 2017
  • This paper presents an approach to detect changes caused by urban development over a large area using KOMPSAT optical images. In order to minimize the radiometric dissimilarities between the images acquired at different times, we apply the grid-based rough radiometric correction as a preprocessing to detect changes in a large area. To improve the accuracy of the change detection results for urban development, we mask-out non-interest areas such as water and forest regions by the use of land-cover map provided by the Ministry of Environment. The Change Vector Analysis(CVA) technique is applied to detect changes caused by urban development. To confirm the effectiveness of the proposed approach, a total of three study sites from Sejong City is constructed by combining KOMPSAT-2 images acquired on May 2007 and May 2016 and a KOMPSAT-3 image acquired on March 2014. As a result of the change detection accuracy evaluation for the study site generated from the KOMPSAT-2 image acquired on May 2007 and the KOMPSAT-3 image acquired on March 2014, the overall accuracy of change detection was about 91.00%. It is demonstrated that the proposed method is able to effectively detect urban development changes in a large area.

Development and Evaluation of a Texture-Based Urban Change Detection Method Using Very High Resolution SAR Imagery (고해상도 SAR 영상을 활용한 텍스처 기반의 도심지 변화탐지 기법 개발 및 평가)

  • Kang, Ah-Reum;Byun, Young-Gi;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.255-265
    • /
    • 2015
  • Very high resolution (VHR) satellite imagery provide valuable information on urban change monitoring due to multi-temporal observation over large areas. Recently, there has been increased interest in the urban change detection technique using VHR Synthetic Aperture Radar (SAR) imaging system, because it can take images regardless of solar illumination and weather condition. In this paper, we proposed a texture-based urban change detection method using the VHR SAR texture features generated from Gray-Level Co-Occurrence Matrix (GLCM). In order to evaluate the efficiency of the proposed method, the result was compared, visually and quantitatively, with the result of Non-Coherent Change Detection (NCCD) which is widely used for the change detection of VHR SAR image. The experimental results showed the greater detection accuracy and the visually satisfactory result compared with the NCCD method. In conclusion, the proposed method has shown a great potential for the extraction of urban change information from VHR SAR imagery.

Detecting Land Cover Change in an Urban Area by Image Differencing and Image Ratioing Techniques (영상의 차연산과 비연산 기법에 의한 도시지역의 토지피복 변화탐지)

  • Lee, Jin-Duk;Jo, Chang-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.43-52
    • /
    • 2004
  • This study presents the application of aerial photographs and the Korea Multi-Purpose Satellite, KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting change in an urban area that has been rapidly growing. For the study, we used multi-temporal images which were acquired by two different sensors. Image registration and resampling were rallied out before performing change detection in a common reference system with the same spatial resolution. for all of the images. Results from image differencing and image ratioing techniques show that panchromatic aerial photographs and KOMPSAT-1 EOC images collected by different sensors have potential to detect changes of urban features such as building, road and other man-made structure. And the optimal threshold values were suggested in applying image differencing and image ratioing techniques for change detection.

  • PDF