• Title/Summary/Keyword: 영상관측

Search Result 1,394, Processing Time 0.089 seconds

On the Observation of Sandstorms and Associated Episodes of Airborne Dustfalls in the East Asian Region in 2005 (2005년 동아시아 지역에서 발생한 모래폭풍과 먼지침전(황사)의 관측)

  • Kim, Hak-Sung;Chung, Yong-Seung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.196-209
    • /
    • 2009
  • Occurrences of sandstorms in the deserts and loess of Mongolia and northern China and associated dustfall episodes in the Korean Peninsula were monitored during the period January through December, 2005. False colour images were made by directly receiving the NOAA Advanced Very High Resolution Radiometer (AVHRR) data, and the distribution and transport of sandstorms were analyzed. The ground concentrations for PM10, PM2.5 and visibility of the dustfall episodes (PM10 concentration over $190{\mu}g\;m^{-3}$) were analyzed at Cheongwon, located midway in South Korea, and in the leeward direction of the place of origin of the sandstorms. Variations in the concentrations of $O_3,\;NO_2$, CO and $SO_2$ were also compared with dust concentrations in the dustfall episodes. Fewer occurrences of strong sandstorms in the place of origin were observed in 2005, due largely to the accumulation of snow and mild fluctuations of high and low pressure systems in the place of origin, thereby accounting for a low frequency of dustfall episodes in Korea, compared with those during the period 1997-2005. A total of 7 dustfall episodes were monitored in Korea in 2005 that lasted 11 days. In summer, sandstorms occurred less frequently in the source region in 2005 due to high humidity and milder winds, thereby causing no dustfall episodes in Korea. In case the sandstorms occurring at the place of source head directly to Korea without passing through large cities and industrial areas of China, the PM2.5 concentrations were measured at 20% or lower than the PM10 concentrations. However, when the sandstorms headed to Korea via the industrial areas of eastern China, where they pick up anthropogenic air pollutants, the PM2.5 concentrations were at least 25% higher of the PM10 concentrations. On the other hand, over 5 cases were observed and analyzed in 2005 where the PM10 concentrations of sand dust originating from the deserts were measured at $190{\mu}g\;m^{-3}$ or lower, falling short of the level of a dustfall episode.

Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis (가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석)

  • Oh, Yurim;Kim, Jae Hwan;Park, Hyungmin;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.531-548
    • /
    • 2015
  • Atmospheric Motion Vector (AMV) from satellite images have shown Slow Speed Bias (SSB) in comparison with rawinsonde. The causes of SSB are originated from tracking, selection, and height assignment error, which is known to be the leading error. However, recent works have shown that height assignment error cannot be fully explained the cause of SSB. This paper attempts a new approach to examine the possibility of SSB reduction of COMS AMV by using a new target tracking algorithm. Tracking error can be caused by averaging of various wind patterns within a target and changing of cloud shape in searching process over time. To overcome this problem, Gaussian Mixture Model (GMM) has been adopted to extract the coldest cluster as target since the shape of such target is less subject to transformation. Then, an image filtering scheme is applied to weigh more on the selected coldest pixels than the other, which makes it easy to track the target. When AMV derived from our algorithm with sum of squared distance method and current COMS are compared with rawindsonde, our products show noticeable improvement over COMS products in mean wind speed by an increase of $2.7ms^{-1}$ and SSB reduction by 29%. However, the statistics regarding the bias show negative impact for mid/low level with our algorithm, and the number of vectors are reduced by 40% relative to COMS. Therefore, further study is required to improve accuracy for mid/low level winds and increase the number of AMV vectors.

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Sea Fog Level Estimation based on Maritime Digital Image for Protection of Aids to Navigation (항로표지 보호를 위한 디지털 영상기반 해무 강도 측정 알고리즘)

  • Ryu, Eun-Ji;Lee, Hyo-Chan;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In line with future changes in the marine environment, Aids to Navigation has been used in various fields and their use is increasing. The term "Aids to Navigation" means an aid to navigation prescribed by Ordinance of the Ministry of Oceans and Fisheries which shows navigating ships the position and direction of the ships, position of obstacles, etc. through lights, shapes, colors, sound, radio waves, etc. Also now the use of Aids to Navigation is transforming into a means of identifying and recording the marine weather environment by mounting various sensors and cameras. However, Aids to Navigation are mainly lost due to collisions with ships, and in particular, safety accidents occur because of poor observation visibility due to sea fog. The inflow of sea fog poses risks to ports and sea transportation, and it is not easy to predict sea fog because of the large difference in the possibility of occurrence depending on time and region. In addition, it is difficult to manage individually due to the features of Aids to Navigation distributed throughout the sea. To solve this problem, this paper aims to identify the marine weather environment by estimating sea fog level approximately with images taken by cameras mounted on Aids to Navigation and to resolve safety accidents caused by weather. Instead of optical and temperature sensors that are difficult to install and expensive to measure sea fog level, sea fog level is measured through the use of general images of cameras mounted on Aids to Navigation. Furthermore, as a prior study for real-time sea fog level estimation in various seas, the sea fog level criteria are presented using the Haze Model and Dark Channel Prior. A specific threshold value is set in the image through Dark Channel Prior(DCP), and based on this, the number of pixels without sea fog is found in the entire image to estimate the sea fog level. Experimental results demonstrate the possibility of estimating the sea fog level using synthetic haze image dataset and real haze image dataset.

Estimation of Rice Heading Date of Paddy Rice from Slanted and Top-view Images Using Deep Learning Classification Model (딥 러닝 분류 모델을 이용한 직하방과 경사각 영상 기반의 벼 출수기 판별)

  • Hyeok-jin Bak;Wan-Gyu Sang;Sungyul Chang;Dongwon Kwon;Woo-jin Im;Ji-hyeon Lee;Nam-jin Chung;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Estimating the rice heading date is one of the most crucial agricultural tasks related to productivity. However, due to abnormal climates around the world, it is becoming increasingly challenging to estimate the rice heading date. Therefore, a more objective classification method for estimating the rice heading date is needed than the existing methods. This study, we aimed to classify the rice heading stage from various images using a CNN classification model. We collected top-view images taken from a drone and a phenotyping tower, as well as slanted-view images captured with a RGB camera. The collected images underwent preprocessing to prepare them as input data for the CNN model. The CNN architectures employed were ResNet50, InceptionV3, and VGG19, which are commonly used in image classification models. The accuracy of the models all showed an accuracy of 0.98 or higher regardless of each architecture and type of image. We also used Grad-CAM to visually check which features of the image the model looked at and classified. Then verified our model accurately measure the rice heading date in paddy fields. The rice heading date was estimated to be approximately one day apart on average in the four paddy fields. This method suggests that the water head can be estimated automatically and quantitatively when estimating the rice heading date from various paddy field monitoring images.

Mapping Technique for Heavy Snowfall Distribution Using Terra MODIS Images and Ground Measured Snowfall Data (Terra MODIS 영상과 지상 적설심 자료를 이용한 적설분포도 구축기법 연구)

  • Kim, Saet-Byul;Shin, Hyung-Jin;Lee, Ji-Wan;Yu, Young-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • This study is to make snowfall distribution map for the 4 heavy snowfall events of January 2001, March of 2004, December of 2005 and January of 2010, and compare the results for three cases of construction methods. The cases are to generate the map by applying IDW(Inverse Distance Weighting) interpolation to 76 ground measured snowfall point data (Snow Depth Map; SDM), mask out the SDM with the MODIS snow cover area (MODIS SCA) of Terra MODIS (MODerate resolution Imaging Spectroradiometer) (SDM+MODIS SCA; SDM_M), and consider the snowdepth lapse rate of snowfall by elevation (Digital Elevation Model; DEM) to the second case (SDM_M+DEM; SDM_MD). By applying the MODIS SCA, the SCA of 4 events was 62.9%, 44.1%, 52.0%, and 69.0% for the area of South Korea. For the average snow depth, the SDM_M decreased 0.9cm, 1.9cm, 0.8cm, and 1.5cm compared to SDM and the SDM_MD increased 1.3cm, 0.9cm, 0.4cm, and 1.2cm respectively.

Development of inside-out probes for both Nuclear Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy (핵자기공명 영상법과 핵자기공명 분광법을 위한 뒤집음-탐침의 개발에 대한 연구)

  • Lee, Dong-Hun;Go, Rak-Gil;Jeong, Eun-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.309-316
    • /
    • 1995
  • RF (radio-frequency) probes of Nuclear Magnetic Resonance are one of the important factors and should be designed and built properly depending upon the geometry of the samples and the information. In general there are two kinds of rf probes : one encircles the sample while the other is placed on the surface of the sample. However, in case that the samples on human internal organs have a tube shape, the two kinds of rf probes, as specified above, are usually unsuitable for the internal imaging due to the degradation of signal-to-noise ratios (SNR's). In this case a probe should be positioned as close to the area as possible by putting the probe in the tubelike sample to improve filling factor In the present study inside-out probes have been constructed in the three different shapes such as an anti-solenoidal, a saddle and a dual surface types. RF-field distributions have also been calculated depending upon the geometrical changes of anti-solenoid probes. Moreover, the performance of the inside-out probes has been checked by measuring SNR's of the images acquired. The inside-out probes constructed in this study produced better SWR's and rf-field uniformity in the area close to the probes in comparing with any other commercial probes. There is a high feasibility that the constructed probes in the present study are applicable to the diagnosis of human bodies.

  • PDF

The Application of ASTER TIR Satellite Imagery Data for Surface Temperature Change Analysis -A Case Study of Cheonggye Stream Restoration Project- (도시복원사업의 열 환경 변화 분석을 위한 ASTER 열적외 위성영상자료의 활용 -청계천 복원사업을 사례로-)

  • Jo, Myung-Hee;Jo, Yun-Won;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • Recently in order to mange better life quality much effort was spent for environmental-friendly urban development project and environmental restoration project. During these projects, there should be deep understanding about atmospheric environment change analysis and long term monitoring so that it would be helpful for better environment promotion such as heat island mitigation effect and wind way construction. In this study, the surface temperature environment change between before and after Cheonggye Stream Restoration Project was mapped and analyzed by using ASTER(Advanced Spaceborne Thermal Emission Reflection Radiometer) TIR(Thermal Infrared) satellite imagery and finally the fact, that the heat island effect was mitigated, was clarified. For this study, the correlation analysis was conducted through comparing the difference between atmosphere temperature of AWS(Automatic Weather System) and surface temperature of ASTER. Furthermore, this study will be the infrastructure of urban meteorology model development by understanding surface temperature pattern change and executing quantitative analysis of heat island.

  • PDF

Detection of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC 보정을 위한 국가 통합기준점 탐지)

  • Lee, Hyoseong;Han, Dongyeob;Seo, Doochun;Park, Byungwook;Ahn, Kiweon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.829-837
    • /
    • 2014
  • The KOMPSAT-3 can acquire panchromatic stereo image with 0.7 m spatial resolution, and provides Rational Polynomial Coefficient (RPC). In order to determine ground coordinate using the provides RPC, which include interior-exterior orientation errors, its adjustment is needed by using the Ground Control Point (GCP). Several thousands of national Unified Control Points (UCPs) are established and overall distributed in the country by the Korean National Geographic Information Institute (NGII). UCPs therefore can be easily searched and downloaded by the national-control-point-record-issues system. This paper introduced the point-extraction method and the distance-bearing method to detect of UCPs. As results, the distance-bearing method was better detected through the experiment. RPC adjustment using this method was compared with that by only one UCP and GCPs using GPS. The proposed method was more accurate than the other method in the horizontal. As demonstrated in this paper, the proposed UCPs detection method could be replaced GPS surveying for RPC adjustment.