• Title/Summary/Keyword: 영구자석형 전동기

Search Result 553, Processing Time 0.027 seconds

Core-loss reduction on PM for IPMSM with concentrated winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF

Torque Ripple Reduction based on Flux Linkage Harmonics Observer for an Interior PM Synchronous Motor including Back EMF Harmonics (왜곡된 역기전력을 갖는 매입형 영구자석 동기전동기의 쇄교자속 고조파 관측기를 이용한 토크리플 저감)

  • Jin, Yong-Sin;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The mechanical vibration of a PM synchronous motor at low speeds due to the back emf harmonics may be serious problems in some application such as MDPS(Motor driven power steering), electric vehicles. In this paper, torque ripple reduction for an interior PM synchronous motor including back emf harmonics is proposed. The dq flux linkage harmonics of the permanent magnet are estimated on real time by using the dq currents of the real system and the model of the MRAS observer. Based on the estimated flux linkage harmonics, the dq harmonic currents for reducing the torque ripples are compensated on the dq reference currents. The estimation of the flux linkage harmonics by the MRAS observer and the torque ripple reduction of the proposed algorithm was verified by the simulation and experiment.

Optimal Design of Interior PM Synchronous Machines Using Randomly-Guided Mesh Adaptive Direct Search Algorithms (RG-MADS를 적용한 매입형 영구자석 동기전동기의 최적설계)

  • Kim, Kwang-Duck;Lee, Dong-Su;Jung, Sang-Yong;Kim, Jong-Wook;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • Newly proposed RG-MADS (Randomly Guided Mesh Adaptive Direct Search) has been applied to the optimal design of Interior Permanent Magnet Synchronous Motor (IPMSM) which has the distinctive features of magnetic saturation. RG-MADS, advanced from classical MADS algorithm, has the superiority in computational time and reliable convergence accuracy to the optimal solution, thus it is appropriate to the optimal design of IPMSM coupled with time-consuming Finite Element Analysis (FEA), necessary to the nonlinear magnetic application for better accuracy. Effectiveness of RG-MADS has been verified through the well-known benchmark-functions beforehand. In addition, the proposed RG-MADS has been applied to the optimal design of IPMSM aiming at maximizing the Maximum Torque Per Ampere (MTPA), which is regarded as representative design goal of IPMSM.

Sensorless Control of a Surface Mounted PM Synchronous Motor in Over Modulation Regions by Detecting Phase Voltages (영구자석 표면부착형 동기전동기의 과변조 영역에서 상전압 검출에 의한 센서리스 제어)

  • Choi, Hae-Jun;Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • The information on the actual voltages and actual currents of the motor is required for the sensorless control of a permanent magnet synchronous motor without rotor position sensors. In the model-based rotor position estimator of a PM synchronous motor, the reference voltages, which are the outputs of the current controller, are commonly used. The reference voltages in over-modulation regions for high-speed operation differ from the actual voltages applied to the motor. Consequently, the estimated rotor position and rotor speed may fail to track the real rotor position and real rotor speed. In this paper, the sensorless control for a PM synchronous motor in over-modulation regions for high-speed operation is proposed. The three-phase voltages applied to the motor are measured by using additional voltage detection circuits, and the performance of the rotor position estimator based on the measured three-phase voltages is validated through the experimental results.

Field Weakening Control of Permanent Magnet Synchronous Motor fed by Hysteresis Current Controlled PWM Inverter (히스테리시스 전류 제어형 PWM 인버터에 의한 영구자석 동기 전동기의 약계자 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Yang, Chun-Suk;Yoon, Myung-Kyun;Yoo, Bo-Min
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.167-170
    • /
    • 1991
  • The back e.m.f. of PMSM is increased as the speed is increased and it saturates the current regulator because it counteracts the available output voltage of the inverter. In the PM motor, however, the required armature terminal voltage can be reduced within the maximum output voltage of the inverter by field weakening control, in which the air gap flux is weakened by the d-axis armature current. In this paper, the field weakening control of the surface PMSM fed by a hysteresis current control led PWM inverter based on the microprocessor is presented. To show the validity of the proposed control method, the simulation and experimental results are provided.

  • PDF

A Sensorless Speed Control of Cylindric;31 Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer (적응 적분바이너리 관측기를 이용한 원통형 영구자석 동기전동기의 센서리스 속도제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.152-163
    • /
    • 2004
  • This paper presents a sensorless speed control of cylindrical permanent magnet synchronous motors(PMSM) using an adaptive integral binary observer In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. With the help of integral characteristic, the rotor speed can be finely estimated and utilized for a sensorless speed controller for PMSM. Since the Parameters of the dynamic equations such as machine inertia or a viscosity friction coefficient are lot well known, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that observer may overcome the problem caused by using the dynamic equations and the rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Torque Trajectory Control of Interior PM Synchronous Motor Using Adaptive Input-Output Linearization Technique (적응 입출력 선형화 제어 기법을 이용한 매입형 영구 자석 동기 전동기의 토오크 궤적 제어)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Kim, Hyun-Soo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.578-581
    • /
    • 1996
  • A torque trajectory control of the IPM synchronous motor using an adaptive input-output linearization technique is proposed. The input-output linearization is performed using the estimated torque output with the knowledge of machine parameters. The linearized model gives the output torque error under the variation of the flux linkage. To give a good torque tracking in the presence of the flux linkage variation, the flux linkage will be estimated where the adaptation law h derived by the Popov's hyperstability theory and the positivity concept. This estimated value is also used for the generation of the d-axis current command for the maximum torque control. Thus, a good torque tracking and the exact maximum torque-per-current operation will be obtained.

  • PDF

Calculation of Parameters Considering Skew in EPS Interior Permanent Magnet Synchronous Motor (전자식 조향 장치용 매입형 영구자석 동기전동기의 Skew를 고려한 파라미터 산정)

  • Lee, Su-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1403-1407
    • /
    • 2013
  • This paper presents the method to calculate the motor parameters considering skew in EPS Interior Permanent Magnet Synchronous Motor (IPMSM). The skew is applied to stator or rotor by general technology used for design of reducing noise and vibration in motor. The characteristics analysis of motor including the skew is mostly used by 3D Finite Element Analysis (FEA), though, this analysis is a very time-consuming to perform. Besides, The reliability lacks due to the considerable change of motor characteristics according to the number of elements in 3D FEA. However, analysis time and effort can be saved by characteristic analysis considering skew using 2D FEA. Therefore, in this paper, a quick and accurate method for the calculations of motor parameters considering skew is suggested. The proposed method is verified by the comparison of calculated and experimental results.

Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor (영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어)

  • Baik, In-Cheol;Lee, Ju-Suk;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

Design and Experimental Verification of an Interior Permanent Magnet Motor for a High-speed Machine (고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 검증)

  • Kim, Sung-Il;Hong, Jung-Pyo;Lee, Woo-Taik;Choi, Chin-Chul;Kwon, Hyuck-Roul;Park, Jeong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.857_858
    • /
    • 2009
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet (PM) synchronous motors have a number of merits such as high efficiency and high power density. Accordingly, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted PM motor of them is mainly used as a high-speed machine. However, the motor has a fatal flaw owing to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the surface-mounted PM motor. Thus, in this paper, an interior PM motor is designed in order to drive the air-blower of FCEV instead of the surface-mounted PM motor, and the experimental results of two models are compared to verify the capability of the interior PM motor for a high-speed machine.

  • PDF