• Title/Summary/Keyword: 염화물

Search Result 909, Processing Time 0.027 seconds

Modeling on Chloride Diffusivity in Concrete with Isotropic and Anisotropic Crack (등방성 및 이방성 균열을 가진 콘크리트의 염화물 확산계수 모델링)

  • Lee, Hack-Soo;Bae, Sang-Woon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.104-111
    • /
    • 2013
  • Deterioration is accelerated due to additional intrusion of chloride ion in crack width in cracked concrete. In this paper, modeling on equivalent diffusion coefficient in cracked concrete is performed for 1-D (Anisotropic) and 2-D (Isotropic) diffusion based on steady state condition. In the previous research, rectangular shape of crack was considered but the shape was modified to wedge shape with torturity. For verification of the proposed model, crack is induced in concrete sample and migration test in steady state is performed for 1-D diffusion. For 2-D diffusion, previous test results are adopted for verification. Through considering wedge shape of crack with torturity, diffusion coefficients in 1-D and 2-D diffusion are reduced, and the more reasonable prediction is obtained. The results from the proposed model with torturity of 0.10~0.15 are shown to be in the best agreement with the test results.

Corrosion Prediction of a Cement Mortar-Grouted Rockbolt by Measuring Its Chloride Diffusion Coefficient (시멘트 모르타르계 록볼트 충전재의 염화물 확산계수 측정을 통한 록볼트 부식 예측)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Kim, Dong-Gyou;Park, Hae-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2006
  • This paper aims to predict the corrosion of a fully cement-grouted rockbolt induced by chloride diffusion in a cement mortar grout. From the viewpoint of the long-term durability, a rockbolt may be deteriorated by chemical components, such as sulphate and chloride, in groundwater. Especially, the steel rod of a rockbolt is corroded mainly by chloride. The rockbolt corrosion results in the volume expansion of a rod and then the cracking of a cement grout. In this study, the chloride diffusion coefficient of a cement mortar grout was used to evaluate the possibility of rockbolt corrosion by chloride, and to predict the long-term durability of a rockbolt. The electric acceleration test method was adopted to measure the chloride diffusion coefficient. In addition, a simple pullout testing system was newly proposed to measure the pullout capacity of a rockbolt more easily in a laboratory condition. From the experiments, it was showed that the chloride could diffuse in the cement grout more easily than in ordinary concrete materials. As a result, it was considered that a rockbolt might be easily corroded in a short term by the diffusion of chemical components with high concentration, although it was fully grouted.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

Comparison of Correlation between Chloride Diffusion and Pores Characteristics in Concrete Cured under Extreme Condition (가혹 조건에서 양생된 콘크리트의 염화물 확산과 공극 특성의 상관관계 비교 )

  • So Yeong Choi;Seong Joon Yang;Il Sun Kim;Eun Ik Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.54-61
    • /
    • 2023
  • In this paper, the compressive strength, pore characteristics, and chloride diffusion coefficient were measured at 28 days of age in order to examine the influence of curing conditions for the chloride diffusion and pores in concrete cured under extreme condition. According to the test results, the compressive strength was improved as the relative humidity increased. Additionally, higher compressive strength was observed when the specimens were cured at 35℃. However, the compressive strength of specimens cured at 45℃ was decreased. Meanwhile, the chloride diffusion coefficient decreased with an increase in curing temperature and relative humidity, indicating a difference compared to the trend observed for compressive strength. On the other hand, the excellent correlation showed between compressive strength and chloride diffusion coefficient, porosity and chloride diffusion coefficient when the concrete cured under water. However, when the concrete cured under extreme condition, this correlation was significantly reduced compared to the water curing case. In contrast, it has been determined that there is no significant correlation between the average pore size and chloride diffusion coefficient, regardless of the curing conditions.

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure (해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Gyeong-Tae;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2017
  • In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.

Prediction Equation for Chloride Diffusion in Concrete Containing GGBFS Based on 2-Year Cured Results (2년 양생 실험결과를 이용한 고로슬래그 미분말 콘크리트의 염화물 확산 예측식)

  • Yoon, Yong-Sik;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag), one of the representative concrete mineral admixtures, improves the long-term durability and engineering performance of concrete by latent hydraulic activity. In this study, considering 3 levels of W/B(0.37, 0.42, 0.47) and GGBFS replacement ratio(0 %, 30 %, 50 %), durability performances for chloride attack are evaluated, and equations which predict behavior of accelerated chloride diffusion are proposed. Also, the relationship between accelerated chloride diffusion coefficient and passed charge is evaluated. In target curing day, accelerated chloride diffusion tests(Tang's method, ASTM C 1202) and compressive strength(KS F 2405) are performed. In the 730 day's results of accelerated chloride diffusion coefficient, GGBFS concrete has up to 28 % of decreasing ratio compared to OPC concrete, and in those of passed charge, GGBFS concrete has up to 29 % of decreasing ratio compared to OPC concrete. Also, it is deemed that the impact of variation of W/B is less in GGBFS concrete than in OPC concrete. The equations which predict accelerated chloride diffusion coefficient and passed charge are drawn, based on the characteristics of mixture and test results. The equation which predicts passed charge shows slightly higher coefficient of determination than that which predicts accelerated chloride diffusion coefficient.

Evaluation of Chloride Absorption in GGBS Concrete by Impedance Measurements (임피던스 측정을 통한 GGBS 콘크리트의 염화물 흡수 평가)

  • Kim, Jaehwan;Cho, Han-Min;You, Young-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.230-237
    • /
    • 2022
  • It is essential that service life of reinforced concrete structures in economic and safety aspects should be secured. It is well-known that chloride attack is a typical deterioration mechanism in field concrete structures. To prevent serious accidents like collapse, many studies have been conducted to increase resistance of chloride ingress using concrete mixed with GGBS. The usage of GGBS concrete is nowadays mandatory. Since most concretes in the field are unsaturated, study regarding chloride absorption is necessary, but many studies have focused on the chloride diffusion phenomenon. Methods for evaluating chloride absorption are cost and improper in the field. It is necessary to develop a simple method for evaluating chloride absorption in practice. This study evaluated resistance of chloride ingress in GGBS concretes with impedance measurement and absorption test. From the results, it was confirmed that the contents of absorbed chloride were linearly correlated with the measured electrical resistivities (or conductivities) in the concrete. At the end of the test, the electrical conductivities were 250.8 S/m (w/b=0.4) and 303.1 S/m (w/b=0.6) for PC concretes, and 2.6 S/m (w/b=0.4) and 64.4 S/m (w/b=0.6) for GGBS concretes, respectively. Considering influencing factors for chloride absorption and impedance measurement, chloride ingress into concrete is mainly affected by pore structures due to replacement of GGBS. Especially, formations of pore structure are different with binder, thereby binders should be considered in building reinforced concrete structures exposed to chloride environments.

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.147-153
    • /
    • 2010
  • The recycling of demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help to solve the growing waste disposal crisis and the problem of the depletion of natural aggregates. The purpose of this study is to investigate the chloride migration of recycled aggregate concrete containing pozzolanic materials by the chloride migration coefficient. The specimens were made with recycled coarse aggregate at various replacement ratios (10, 30, 50%) and metakaolin, blast furnace slag, and fly ash is replaced for recycled concrete with a mixing ratio of 20%. The major results are as follows. 1) The compressive strength of recycled aggregate concrete containing pozzolanic materials increases as the curing age and chloride diffusivity decreases. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag or metakaolin that shows a value similar to or lower than that of plain concrete at all ages.

Penetration of De-icing Salt in Bare Concrete Bridge Decks in Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin Won;Ku, Bon Sung;Rhee, Ji Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • In 1980s, a number of bridges with bare concrete deck were constructed on the Korea highway. After 20 years service, many bare concrete decks are still in good condition without special maintenance activity. Therefore, the application of the bare concrete deck is being reestimated from the view of construction and maintenance. As a part of the program, the characteristic of penetration(surface chloride and apparent diffusion coefficient) of de-icing salt into bare concrete bridge deck was analyzed in order to predict the service life of bridge on Korea highway.

A study of semi-quantification of the Friedel's salt using the X-ray diffraction method in concrete (콘크리트 내 Friedel염의 XRD를 이용한 반정량적 측정기법에 관한 연구)

  • Lee, Ho-Jae;Lee, Jang-Hwa;Kim, Do-Gyeum
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • Despite the importance of chloride binding, it is very difficult to measure the binding capacity, in particular, for the concrete body in an existing structure: in fact, the measurement procedure for chloride binding is much influenced by the environmental condition such as temperature, fineness of sample and pore water extraction techniques. The present study concerns the quantification of the binding capacity of chloride ions in concrete using the X-ray diffraction (XRD) technique. Once the binding isotherm of chlorides was determined by the Langmuir isotherm, as a function of the W/C, curing age and binder type, the generation of bound chlorides (i.e. Friedel's salt) was simultaneously ensured by the XRD technique. The amount of bound chloride was then determined by analyzing the peak intensity for the bound chlorides in the XRD curve. It was found that an increase in the curing age and a decrease in the W/C resulted in an increase in the binding capacity.