• Title/Summary/Keyword: 염화물이온

Search Result 259, Processing Time 0.028 seconds

Soil Stabilization with Lime and Chemical Additives (석회 및 화학첨가제에 의한 건설잔토의 안정처리)

  • 민덕기;황광모;박근호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.145-151
    • /
    • 2001
  • 본 연구에서는 울산 삼산지역의 도시 개발로 인하여 다량 발생되고 있는 건설잔토의 유효이용을 목적으로 대상토에 생석회와 화학 첨가제를 혼합하여 안정처리를 할 경우 보조기층 및 노상용 재료로써의 사용 가능성을 평가하였다. 1가 이온($Na^{+}$, $K^{+}$)가 2가 이온(Ca$^{2+}$, $Mg^{2+}$), 염화물(Cl)과 황산염(So$_4$)으로 구성된 화학 첨가제의 첨가에 따른 일축압축강도를 비교한 결과, 1가 이온의 첨가시 장기강도 발현이 우수한 것으로 나타났고, 염화물(Cl)은 첨가시 강도 발현이 우수한 것으로 나타났다. 건설잔토에 생석회와 CaCl$_2$를 첨가하면, 생석회로 처리된 시료에 비해 2배~4배의 강도가 증가되어 생석회 안정화에 대한 효과가 좋은 것으로 나타났다. 원시료토에 생석회, 생석회와 화학 첨가제로 안정처리하여 도로의 보조기층재료나 노상용 재료로의 사용여부를 평가한 결과, 생석회와 CaCl$_2$로 안정처리한 경우만이 시방기준 CBR 10%이상, 소성지수 10%이하를 만족시켜 노상용 재료로서의 사용가능성을 확인할 수 있었다.

  • PDF

A Study on Corrosion Resistance of the Reinforement in Concrete Using Blast-Furnace Slag Powder (고로슬래그미분말을 사용한 콘크리트의 염화물이온에 의한 철근부식 저항성 연구)

  • Kim Eun-Kyun;Kim Jin-Keun;Lee Dong-Hyuk;Kim Young-Ung;Kim Yong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.1-9
    • /
    • 2004
  • This paper represents the permeability of chloride ions and the corrosion performance in the concrete blended with granulate blast furnace slag exposed to chloride environment. An ordinary cement (type I ) and sulfate resisting cement(type V) were used for the experiment. The two cements were combined with $0\%$, $25 \%$, $40\%$, and $55\%$ of the granulated blast furnace slag. The accelerated permeability tests of chloride ions were performed in accordance with ASTM C1202, and the accelerated corrosion tests of steel were carried out by using the method of immersion/drying cycles. After water curing 28 days, 56 days and 91 days, these tests were conducted until 30 cycles. In every cycle, test specimens were wetted in $3\%$ NaCl solution for three days and dried again in $60^{\circ}C$ air for four days. As an experimental results, the diffusion coefficient of chloride ions of the ordinary cement Concrete Combined granulated blast furnace slag was much lower than that of non granulated blast furnace slag concrete. Moreover, the diffusion coefficient of chloride ions of sulfate resisting cement concrete was higher than that of ordinary cement concrete. On the basis of the results of accelerated corrosion tests, corrosion resistance of the concrete mixed with granulated blast furnace slag shows good to corrosion resistance, however, the concrete with sulfate resisting cement shows bad to corrosion resistance.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Bisphenol A and F Type Epoxy Resin with Calumite (비스페놀 A 및 F형 에폭시수지와 칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.517-524
    • /
    • 2014
  • Nitrite-Type hydrocalumite (calumite) is a material that can adsorb chloride ions ($Cl^-$) that cause corrosion of reinforce bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete. In this study, polymer-modified mortars using two types of epoxy resin with calumite are prepared with various polymer binder-ratios of 0, 5, 10, 15, 20% and calumite contents of 0, 5%. The specimens are tested for chloride ion penetration, carbonation, drying shrinkage and corrosion inhibition. As a result, the chloride ion penetration and carbonation depth of PMM using epoxy resin somewhat increases with increasing calumite contents, but those remarkably decreases depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to decrease with increasing polymer-binder ratio and calumite content. Unmodified mortars with calumite content of 5% did not satisfy quality requirement by KS. However, it was satisfied with KS requirement by the modification of epoxy resin in cement mortar. On the whole, the carbonation and chloride ion penetration depth of epoxy-modified mortars with calumite is considerably improved with an increase in the polymer-binder ratio regardless of the calumite content, and is remarkably improved over unmodified mortar. And, the replacement of the portland cement with the calumite has a marked effect in the corrosion-inhibiting property of the epoxy-modified mortars.

Chloride Penetration Analysis of Fly Ash Concrete using Potentiometric Titration and XRF (플라이애시를 혼입한 콘크리트의 전위차 적정법과 XRF를 이용한 염화물 침투 분석 )

  • Eun-A Seo;Ji-Hyun Kim;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.16-22
    • /
    • 2023
  • In this study, a salt water immersion test was performed on concrete specimens simulating the concrete mix design of the nuclear power plant, and the correlation between the amount of chloride and the XRF component according to the depth of the concrete was analyzed. The amount of chloride on the surface of the nuclear power plant concrete increased slightly with increasing immersion time in salt water, but the amount of chloride in the depth of 5.5 mm or more showed a clear tendency to increase with increasing immersion time in salt water. As a result of analyzing the correlation between the amount of chloride in concrete and the XRF component, the concrete with 20% FA substitution compared with the OPC concrete showed a very high correlation between the composition ratio of Cl ions and the evaluation result of salt damage resistance by XRF component analysis. Accordingly, it was confirmed that chlorine ion analysis and salt damage resistance performance evaluation by XRF component analysis were possible through repeated data accumulation in the nuclear power plant concrete mix with 20% fly ash replacement.

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections (중성화와 염화물 침투가 동시에 발생하는 철근콘크리트 단면의 매개변수 분석)

  • Zhu, Xingji;Kim, Soye;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.66-74
    • /
    • 2016
  • The objective of this study is the investigation of the influence of carbonation on the penetration of chloride ions in reinforced concrete sections for different mix proportions and environmental conditions. A comprehensive numerical model based on the change of the pore structure and the chemical equilibrium was used for this combined action of carbonation and chloride ingress. The empirical formulae of some parameters in this model are estimated according to numerous experimental data. And, a set of data analysis is carried out to simplify the estimation of model variables to reduce the computational cost. A coupled simulation of the transports of carbon dioxide, chloride ions, heat and moisture is carried out. Then, the parametric analysis is given and the numerical results show that the effect of carbonation of the free chloride ingress is significant and depends on the binder types and concrete mix proportion.

A study of semi-quantification of the Friedel's salt using the X-ray diffraction method in concrete (콘크리트 내 Friedel염의 XRD를 이용한 반정량적 측정기법에 관한 연구)

  • Lee, Ho-Jae;Lee, Jang-Hwa;Kim, Do-Gyeum
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • Despite the importance of chloride binding, it is very difficult to measure the binding capacity, in particular, for the concrete body in an existing structure: in fact, the measurement procedure for chloride binding is much influenced by the environmental condition such as temperature, fineness of sample and pore water extraction techniques. The present study concerns the quantification of the binding capacity of chloride ions in concrete using the X-ray diffraction (XRD) technique. Once the binding isotherm of chlorides was determined by the Langmuir isotherm, as a function of the W/C, curing age and binder type, the generation of bound chlorides (i.e. Friedel's salt) was simultaneously ensured by the XRD technique. The amount of bound chloride was then determined by analyzing the peak intensity for the bound chlorides in the XRD curve. It was found that an increase in the curing age and a decrease in the W/C resulted in an increase in the binding capacity.

Material Properties of Fast hardening Polymer Mortar by Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 의한 속경성 폴리머 모르타르의 재료 특성)

  • Shin, Seung-Bong;Kim, Gyu-Yong;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.145-151
    • /
    • 2019
  • The Physical performance of use materials was evaluated to improve durability of fast-paced repair mortar used at rapid construction sites. The fastening performance and basic performance were evaluated by substituting ferronickel grinding slag residues, rapid settlement, and EVA-based polymer for mortar. As a result, the compressive strength, flexural strength and adhesion strength were increased due to the use of FS Fine Aggregate and RS Fine Aggregate. The chloride ion promotion test of fast-polymer mortar kept the chloride inhibitory performance from 7 days to 28 days when fNS was used less than 50%. Durability degradation due to the use of FS Fine Aggregate and RS Fine Aggregate has not been found, and it is believed that further consideration of economic and long-term durability will be required for use as alternative Aggregate for construction and civil engineering.

Properties of Epoxy-Modified Mortars with Alkali Activators and Ground Granulated Blast Furnace Slag (알칼리자극제 및 고로슬래그미분말을 병용한 에폭시수지 혼입 폴리머 시멘트 모르타르의 성질)

  • Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this study is to investigate the properties of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS) and alkali activators. The hardener-free EMMs with a GGBFS content of 20% using 4 types of alkali activators were prepared with various polymer-binder ratios, and tested for strengths, water absorption, carbonation depth, chloride ion and H2SO4 penetration depth. The conclusions obtained from the test results are summarized as follows: The compressive strength of the EMMs with a GGBFS content of 20% attains a maximum at a polymer-binder ratio of 10%. The flexural strength of the hardener-free EMMs using Ca(OH)2 as a alkali activator is improved with increasing polymer-binder ratios. However, the flexural strength of the EMMs using NaCO3, Na2SO4 and Li2CO3 is gradually decreased with increasing polymer-binder ratios. Regardless of the type of alkali activator, the water absorption, chloride ion penetration and carbonation depth are remarkably decreased with increasing polymer-binder ratios due to the epoxy film formed in the EMMs. The H2SO4 penetration depth of the hardener-free EMMs with a GGBFS content of 20% is gradually increased with increasing polymer-binder ratio. In this study, the properties of hardener-free EMMs using Ca(OH)2 as a alkali activator are more excellent than those of other alkali activators.

Chloride Diffusion Coefficients in Cold Joint Concrete with GGBFS (고로슬래그 미분말을 혼입한 콜드조인트 콘크리트의 염화물 확산계수)

  • Oh, Kyeong-Seok;Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.44-49
    • /
    • 2016
  • Among the deteriorating agents, chloride ion is reported to be one of the most harmful ions due to its rapid diffusion and direct effect on steel corrosion. Cold joint which occurs in mass concrete placing is vulnerable to shear resistance and more severe deterioration. The paper presents an quantitative evaluation of chloride diffusion coefficient in OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) concrete containing cold joint. GGBFS concrete shows $6.6{\times}10^{-12}m^2/sec$ which is almost 30% level of OPC concrete results and the trend is repeated in the case of cold joint concrete. Compared with OPC concrete, GGBFS concrete is evaluated to have better resistance to chloride penetration, showing 0.30 times of chloride diffusion coefficient in concrete without cold joint 0.39 times with cold joint, respectively.