• Title/Summary/Keyword: 염소화 반응

Search Result 163, Processing Time 0.026 seconds

Electrochemical Generation of Chlorine Dioxide Using Polymer Ion Exchange Resin (고분자 이온교환수지를 이용한 의료.식품용 멸균제 이산화염소의 전기화학분해 발생)

  • Rho, Seung Baik;Kim, Sang Seob
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • A characteristic study of chlorine dioxide generation by the electrolysis system was performed after chlorite ($ClO_2^-$) is adsorbed from sodium chlorite by a polymer ion exchange resin. A strongly basic anion exchange resin was used and a Ti plate coated with Ru and Ir was used as an electrode. Various parameters such as reaction stirring velocity, reaction temperature, chlorine dioxide product concentration, ion exchange resin content and product maker type for the adsorption quantity in the chlorite adsorption of ion exchange resin were investigated and found the ion exchange resin with the maximum adsorption quantity. A generation trend of chlorine dioxide was observed by the electrolysis system and optimum conditions on the desired value were found using response surface design of DOE (Design of Experiments). The strongly basic anion exchange resin with the maximum adsorption quantity was SAR-20 (TRILITE Gel type II) and the adsorption quantity was around 110 mg/IER (g). Observed generation optimum conditions of chlorine dioxide were constant-current (electrode area base; $A/dm^2$) and flow rate of $N_2$ gas (4.7 L/min) at the desired value of sterilization (900~1000 ppm, 1 h).

Decomposition of Chlorinated Methane by Thermal Plasma (열플라즈마에 의한 클로로메탄의 분해)

  • Kim, Zhen Shu;Park, Dong Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.136-141
    • /
    • 2007
  • The decomposition of chlorinated methanes including $CCl_4$, $CCl_3H$, and $CCl_2H_2$ was carried out using a thermal plasma process and the characteristics of the process were investigated. The thermal equilibrium composition was analyzed with temperature by Fcatsage program. The decomposition rates at various process parameters including the concentration of reactants, flow rate of carrier gas, and quenching rate, were evaluated, where sufficiently high conversion over 92% was achieved. The generation of main products was strongly influenced by the reaction atmosphere; carbon, chlorine, and hydrogen chloride at neutral condition; carbon dioxide, chlorine, and hydrogen chloride at oxidative condition. The decomposition mechanism was speculated considering the results from Factsage and the identification of generated radicals and ionic species. The main decomposition pathways were found to be dissociative electron attachment and oxidative by radicals formed in a plasma state.

Sensitized effects of photo-sensitized oxidation in water under UV irradition (수용액에서 UV를 이용한 광증감 산화반응시 증감제에 따른 증감효과에 관한 연구)

  • Lee, Chun Sik;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.23-31
    • /
    • 1998
  • Photo-sensitized oxidation of benzene in aqueous solution was conducted with persulfate, nitrate, nitrite, sulfate and chloride as sensitizers.In the photo-sensitized oxidation of benzene persulfate, nitrate and nitrite could act as sensitizers, while no detectable effects could be observed with sulfate and chloride. With increasing nitrite concentration the photo-sensitized oxidation of benzene ran through a maximum value and decreased thereafter with increasing nitrite concentration. A build-up of nitrite ions seemed to scavenge hydroxyl radicals. When nitrite was present with other ions, nitrite inhibited the photo-sensitized oxidation of benzene. Phenol and biphenyl were identified as intermediate.

  • PDF

Histological Comparison of Vascular Grafts in a Pig to Goat Xenotransplantation Model (돼지-염소 이종이식모델에서 냉동 및 무세포화 혈관이식편의 조직학적 비교분석)

  • Yang Ji-Hyuk;Sung Ki-Ick;Kim Won-Geon
    • Journal of Chest Surgery
    • /
    • v.39 no.6 s.263
    • /
    • pp.427-433
    • /
    • 2006
  • Background: Current vascular prostheses are considered still inadequate for reconstruction of small-diameter vessels. To evaluate the potential use of xenograft vessels as small diameter arterial grafts, we implanted porcine vessels in goats. The grafts were treated with two different processes, freezing and acellularization, before implantation, and gross inspection as well as microscopic examination followed after a predetermined period. Material and Method: Bilateral porcine carotid arteries were harvested and immediately stored at $-70^{\circ}C$ within tissue preservation solution. One of them was designated as frozen xenograft vessel. The other one was put on acellularization process using NaCl-SDS solution and stored frozen until further use. Grafts were implanted in the place of carotid arteries of the same goat. The grafts have remained implanted for 1, 3, and 6 months in three animals, respectively. Periodic ultrasonographic examinations were performed during the observation period. After explantation, the grafts were analyzed grossly and histologically under light microscope. Result: All animals survived the experimental procedure without problems. Ultrasonographic examinations showed excellent patency of all the grafts during the observation period. Gross examination revealed nonthrombotic, patent lumens with smooth surfaces. Microscopic examinations of the explanted grafts showed cellular reconstruction at the 6-month stage in both grafts. Although more inflammatory responses were observed in the early phase of frozen xenografts, there was no evidence of significant rejection. Conclusion: These findings suggest that porcine xenograft vessels, regardless of pre-implantation processes of acelluarization or freezing, can be acceptably implanted in goats, although short duration of observation in a small number of animals may limit this study.

Knoevenagel Condensation Reaction Using Amine-functionalized MCM-41 Base Catalysts (아민고정화 MCM-41 염기촉매를 이용한 Knoevenagel 축합반응)

  • Choi, Jung-Sik;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.417-423
    • /
    • 2006
  • A series of amine functionalized MCM-41 catalysts were prepared by aminopropyltrimethoxysilane grafting and their catalytic performance in Knoevenagel reaction of selected substrates was investigated. Water resistant and catalytically active amine grafted MCM-41 was prepared by post-synthetic silylation using methyltrimethoxysilane ; hydrogen bonding of the water molecules formed during the condensation reaction to the active N group was suppressed, which led to high TON of the reaction. Amine functionalized MCM-41 prepared by coating method produced high conversion, but the TON of the catalyst was much lower than that of the amine grafted MCM-41; pore volume of the functionalized MCM-41 decreased substantially and large portion of the immobilized amine is believed to be hydrogen bonded to each other, which can result in decrease in the basicity of the N group. A secondary amine group was prepared by room temperature condensation between aminopropylsilane and chloropropylsilane, and the MCM-41 grafted with the secondary amine group demonstrated the highest catalytic activity among the catalysts prepared.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.

A Study for Reductive Degradation and Surface Characteristics of Hexachloroethane by Iron Sulfide ($FeS,\;FeS_{2}$) (황화철($FeS,\;FeS_{2}$)을 이용한 헥사클로로에탄의 환원적 분해반응과 표면특성에 관한 연구)

  • Park Sang-Won;Kim Sung-Kuk;Heo Jae-Eun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.35-42
    • /
    • 2006
  • The following results were obtained in the reductive degradation of hexachloroethane (HCA), and surface characteristics by using iron sulfide ($FeS,\;FeS_{2}$) mediators. HCA was degraded to pentachloroethane (PCA), tetrachloroethylene(PCE), trichloroethylene(TCE) and cis-l,2-dichloroethylene (cis-1,2-DCE) by complicated pathways such as hydrogenolysis, dehaloelimination and dehydrohalogenation. FeS had more rapid degradation rates of organic solvent than $FeS_{2}$. In liquidsolid reaction, the reaction rates of organic solvents were investigated to explain surface characteristics of FeS and $FeS_{2}$.. To determine surface characteristics of FeS and $FeS_{2}$, the specific surface area and surface potential of each mineral was determined and the hydrophilic site ($N_{s}$) was calculated. The specific surface area ($107.0470m^{2}/g\;and\;92.6374m^{2}/g$) and the $pH_{ZPC}$ of minerals ($FeS\;PH_{ZPC}=7.42,\;FeS_{2},\;PH_{ZPC}=7.80$) were measured. The results showed that the Ns of FeS and $FeS_{2}$ were $0.053\;site/mm^{2}\;and\;0.205\;site/mm^{2}$, respectively. $FeS_{2}$ had more hydrophilic surface than FeS. In other words, FeS have more hydrophobic surface site than $FeS_{2}$.

Decomposition of Dye Chemicals by Electrolytic Oxidation Method (전기분해법을 이용한 염료분해에 관한 연구)

  • Lee, Tae-Jin;Chun, Byoung Chul;Chung, Yong-Chan
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.145-150
    • /
    • 2006
  • Electrolysis of aqueous solution produces hydroxide ions and proton ions for the hydrolysis of reactive organic compounds, and oxidizing agent such as hypochlorite ions for the oxidative decomposition of organic chemicals. Electrolytic decomposition of dying chemicals was tested with our custom made system, and analyzed by HPLC and UV-VIS spectrophotometer. The electrolytic system could decompose dying chemicals with very high reactivity and low cost. Disposal of byproduct and refill of reactant during electrolysis was not necessary. Decomposition time of dying chemicals is compared under similar conditions, and application to water purification is discussed.

  • PDF

The Recovery of Alumina from Water Treatment Plant Sludge by Chlorination (정수장 슬러지로부터 염소화 반응에 의한 알루미나 회수)

  • Yeon, Ik-Jun;Lee, Sang-Woo;Kim, Kwang-Yul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.211-216
    • /
    • 1999
  • This study was conducted to recover the aluminum from water treatment plant sludge containing alumina. The optimum reaction conditions about chlorination of sludge with $NH_4Cl$ are as follows: the weight ratio of sludge to $NH_4Cl$ is 4, the reaction time is 60min, and the temperature is $300^{\circ}C$. And the result of leaching time test showed that the highest yield of alumina at $160^{\circ}C$ was 96% but the result of leaching test at $160^{\circ}C$ was little better than that of leaching test at $100^{\circ}C$ while the leaching concentration of HCl was 4N. The optimum reaction conditions of chlorinated sludge with $NH_4Cl$, gave the highest yield of 95.41% based on aluminum.

Production of Ethylbenzene from 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 에틸벤젠의 제조)

  • Joo, Young J.;Won, Jeong-Im;Kim, Chang-Min;Park, Kwang-Chun;Lee, Sang-Ok;Kim, Hong-Seok
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.326-333
    • /
    • 1996
  • Dehydrogenation of 4-vinylcyclohexene(4-VCH) to ethylbenzene is elucidated via catalytic transfer hydrogenation with the heterogeneous catalyst of Pd/C. Hydrogen-donor solvent is ethanol or water. Oxidizers of the catalytic dehydrogenation reaction are mono- or dinitro compounds, $H_2O_2$, NaClOn (n=1~4), or oxygen at $70{\sim}110^{\circ}C$. The ratio of 4-VCH/Nitro compounds is 1:0.02 to 1:0.5 and 4-VCH vs. $H_2O_2$ or NaClOn (n=1~4) is 1:0.1 to 1:3.

  • PDF