• Title/Summary/Keyword: 열 형광선량계

Search Result 134, Processing Time 0.022 seconds

A Study on the Evaluation of Patient Dose in Interventional Radiology (중재적방사선검사에서 환자 피폭선량에 관한 연구)

  • Park, Hyung-Sin;Lim, Cheong-Hwan;Kang, Byung-Sam;You, In-Gyu;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.299-308
    • /
    • 2012
  • To perform patient dose surveys in major interventional radiography procedures as a mean of inter-institutional comparison and of establishing reference dose levels with the ultimate goal of optimizing patient doses in the field of interventional radiography. We reviewed international patient dose survey data in the literature and measured patient dose in major interventional radiography procedures (TACE, AVF, PTBD, TFCA, GDC embolization). ESD(Entrance Skin Dose) was measured using TLD chips attached to the patient skin and ED(Effective Dose) was calculated using angiography unit-derived DAP. A survey of patient dose in interventional radiography procedures were also performed with a questionnaire for interventional radiologists and we proposed a guideline for optimizing patient doses in the field of interventional radiology. The patient dose survey data in interventional radiography procedures were very rare in literature compared with those in diagnostic radiography procedures. In TACE, the mean ED was 25.43 mSv and the mean ESD was 511.75 mGy. The mean ED of TACE was not high, but the cumulative dose should be checked, due to longer procedure TACE. In TFCA, the mean ED was 22.6 mSv and it was relatively high compared with data of other countries. In GDC embolization, the mean ED was not available, because GDC embolization was performed with old Image-Intensifier-type unit and there has no unit-installed ionization chamber. Also, the mean ESD of GDC embolization was up to 2,264 mGy and further studies are needed to calculate the net ED of GDC embolization. Patient dose occurred during interventional radiography procedures are high related with the difficulty of the procedure, fluoroscopy time, the number of angiographies and the treatment protocol. Therefore, continuous education and efforts should be made to optimize the patient dose in the field of interventional radiology.

Evaluation of the dose of 16-MDCT and 64-MDCT in case of Coronary Artery CT Angiography using Thermoluminescence Dosimeter (열형광선량계를 이용한 16-MDCT와 64-MDCT의 관상동맥 CT 혈관조영술 시 선량평가)

  • Kim, Sang-Tae;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.336-343
    • /
    • 2010
  • Coronary artery CT angiography has short scanning length, the exposure dose is high. Therefore, it is required to study on the organ dose when using MDCT. We compared the differences between the absorbed dose and effective dose in the major organs assessing the absorbed dose in the major organs by 16-MDCT and 64-MDCT in the subjects with coronary artery CT angiography, the same protocol by 16-MDCT and 64-MDCT. As a result, the great orders of absorbed dose when conducting coronary artery CT angiography had been shown as heart, stomach, liver, pancreas, kidney, spleen, large intestine, lung, small intestine, thyroid gland, ovary, bladder, and orbit with the absorbed dose distribution of $0.538{\pm}0.026(Mean{\pm}SD,\;p<0.05)mGy{\sim}71.316{\pm}4.316mGy$ in 16-MDCT, and heart, stomach, pancreas, spleen, liver, kidney, small intestine, large intestine, lung, thyroid gland, ovary, bladder, and orbit with the absorbed dose distribution of $0.87{\pm}0.01mGy{\sim}115.26{\pm}1.59mGy$ in 64-MDCT, demonstrating some different distributions. The exposed doses to the patient per one time scanning with coronary artery CT angiography were $71.316{\pm}4.316mGy$ in 16-MDCT as the absorbed dose based on the heart and $115.26{\pm}1.59mGy$ in 64-MDCT. The effective doses were 7.41 mSv and 12.11 mSv in 16 and 64-MDCT, respectively. Taking into account the results of brain CT with 2.8 mSv that has comparatively large scanning length and size, facial CT 0.8 mSv, chest CT 5.7 mSv, pelvic CT 7.2 mSv, and abdominal and pelvic CT 14.4 mSv, it is very high considering the scanning length of 13 cm limited to the heart for the scanning range.

Comparative Analysis of Absorption Doses between Exposed and Unexposed Area on Major Organs During CT Scan (전산화 단층촬영시 주선속내 외의 주요장기 흡수선량 비교분석)

  • 사정호;서태석;최보영;정규회
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • It is possible to obtain a fast CT scan during breath holding with spiral technique. But the risk of radiation is increased due to detailed and repeated scans. However, the limitation of X-ray doses is not fully specified on CT, yet. Therefore, the purpose of the present study is to define the limitation of X-ray doses on CT The CT unit was somatom plus 4. Alderson Rando phantom, Solenoid water phantom, TLD, and reader were used. For determining adequate position and size of organs, the measurement of distance(${\pm}$2mm) from the midline of vertebral body was performed in 40 women(20~40 years). On the brain scan for 8:8(8mm slice thickness, 8mm/sec movement velocity of the table) and 10:10(10mm slice thickness, 10mm/sec movement velocity of the table) methods, the absorption doses of exposed area of the 10:10 were slightly higher than those of 8:8. The doses of unexposed uterus were negligible on the brain scan for both 8:8 and 10:10. On the chest scan for 8:8, 8:10(8mm slice thickness, 10mm/sec movement velocity of the table), 10:10, 10:12(10mm slice thickness, 12mm/sec movement velocity of the table) and 10:15(10mm slice thickness, 15mm/sec movement velocity of the table) methods, 8:8 method of the absorption doses of exposure area was the most highest and 10:15 method was the most lowest. The absorption doses of 8:10 method was relatively lower than those of the other methods. In conclusion, the 8:10 method is the most suitable to give a low radiation burden to patient without distorting image quality.

  • PDF

A Study of Injection Dose for Patients and Exposure Dose for Technologists from the PET/CT Systems (PET/CT 장비 특성에 따른 방사성 의약품 주입량이 방사선 종사자에게 미치는 영향)

  • Park, Hoon-Hee;Oh, Ki-Beak;Lee, Seung-Jae;Bhan, Young-Kag;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Purpose: It appears the different value when the injection dose is calculating for patients on each PET/CT systems. It directly affects the technologists' radiation exposed dose. We studied the effect of the variable injection doses from several PET/CT systems to exposure dose for technologists. Materials and Methods: Six technologists have worked for 5 months through unit rotations with 3 PET/CT systems {Scanner 1 (S1): 0.15 mCi/kg, Scanner 2 (S2): 0.17 mCi/kg, Scanner 3 (S3): 0.12 mCi/kg}. Eighteen to 19 patients have had examinations per a day on each PET/CT systems. Examination parameters were adjusted to the same. TLDs were used for checking the exposure dose of technologists. Results: Each technologists' the monthly average exposure dose was as follows; S1: 0.76 mSv, S2: 0.93 mSv, S3: 0.47 mSv. The maximum exposure dose was 1.12 mSv, and minimum was 0.42 mSv. The results showed significance in the correlation between the PET/CT system and the exposure dose (p<0.005). Conclusion: When the amount of injection dose was small, the exposure dose was decreased not only the patients but also the technologists. The exposure dose was decreased by the individual proficiency of technologists. However, the low injection dose can highly reduce the exposure dose for technologist so that there will be needed to following studies.

  • PDF

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

A Study on the Necessary Number of Bolus Treatments in Radiotherapy after Modified Radical Mastectomy (변형 근치적 유방절제술 후 방사선치료에서 볼루스 적용횟수에 대한 고찰)

  • Hong, Chae-Seon;Kim, Jong-Sik;Kim, Young-Kon;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Purpose: Post-mastectomy radiotherapy (PMR) is known to decrease loco-regional recurrence. Adequate skin and dermal dose are achieved by adding bolus. The more difficult clinical issue is determining the necessary number of bolus treatment, given the limits of normal skin tolerance. The aim of this study is to evaluate the necessary number of bolus treatment after PMR in patients with breast cancer. Materials and Methods: Four female breast cancer patients were included in the study. The median age was 53 years(range, $38{\sim}74$), tumor were left sided in 2 patients and right sided in 2patients. All patients were treated with postoperative radiotherapy after MRM. Radiotherapy was delivered to the chest wall (C.W) and supraclavicular lymph nodes (SCL) using 4 MV X-ray. The total dose was 50 Gy, in 2 Gy fractions (with 5 times a week). CT was peformed for treatment planning, treatment planning was peformed using $ADAC-Pinnacles^3$ (Phillips, USA) for all patients without and with bolus. Bolus treatment plans were generated using image tool (0.5 cm of thickness and 6 cm of width). Dose distribution was analyzed and the increased skin dose rate in the build-up region was computed and the skin dose using TLD-100 chips (Harshaw, USA) was measured. Results: No significant difference was found in dose distribution without and with bolus; C.W coverage was $95{\sim}100%$ of the prescribed dose in both. But, there was remarkable difference in the skin dose to the scar. The skin dose to the scar without and with bolus were $100{\sim}105%\;and\;50{\sim}75%$. The increased skin dose rates in the build-up region for Pt. 1, Pt. 2. Pt. 3 and Pt. 4 were 23.3%, 35.6%, 34.9%, and 41.7%. The results of measured skin dose using TLD-100 chips in the cases without and with bolus were 209.3 cGy and 161.1 cGy, 200 cGy and 150.2 cGy, 211.4 cGy and 160.5 cGy, 198.6 cGy and 155.5 cGy for Pt. 1, Pt. 2, Pt. 3, and Pt. 4. Conclusion: It was concludes through this analysis that the adequate number of bolus treatments is 50-60% of the treatment program. Further, clinical trial is needed to evaluate the benefit and toxicity associated with the use of bolus in PMR.

  • PDF

Analysis of the Imaging Dose for IGRT/Gated Treatments (영상유도 및 호흡동조 방사선치료에서의 영상장비에 의한 흡수선량 분석)

  • Shin, Jung-Suk;Han, Young-Yih;Ju, Sang-Gyu;Shin, Eun-Hyuk;Hong, Chae-Seon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Purpose: The introduction of image guided radiation therapy/four-dimensional radiation therapy (IGRT/4DRT) potentially increases the accumulated dose to patients from imaging and verification processes as compared to conventional practice. It is therefore essential to investigate the level of the imaging dose to patients when IGRT/4DRT devices are installed. The imaging dose level was monitored and was compared with the use of pre-IGRT practice. Materials and Methods: A four-dimensional CT (4DCT) unit (GE, Ultra Light Speed 16), a simulator (Varian Acuity) and Varian IX unit with an on-board imager (OBI) and cone beam CT (CBCT) were installed. The surface doses to a RANDO phantom (The Phantom Laboratory, Salem, NY USA) were measured with the newly installed devices and with pre-existing devices including a single slice CT scanner (GE, Light Speed), a simulator (Varian Ximatron) and L-gram linear accelerator (Varian, 2100C Linac). The surface doses were measured using thermo luminescent dosimeters (TLDs) at eight sites-the brain, eye, thyroid, chest, abdomen, ovary, prostate and pelvis. Results: Compared to imaging with the use of single slice non-gated CT, the use of 4DCT imaging increased the dose to the chest and abdomen approximately ten-fold ($1.74{\pm}0.34$ cGy versus $23.23{\pm}3.67$cGy). Imaging doses with the use of the Acuity simulator were smaller than doses with the use of the Ximatron simulator, which were $0.91{\pm}0.89$ cGy versus $6.77{\pm}3.56$ cGy, respectively. The dose with the use of the electronic portal imaging device (EPID; Varian IX unit) was approximately 50% of the dose with the use of the L-gram linear accelerator ($1.83{\pm}0.36$ cGy versus $3.80{\pm}1.67$ cGy). The dose from the OBI for fluoroscopy and low-dose mode CBCT were $0.97{\pm}0.34$ cGy and $2.3{\pm}0.67$ cGy, respectively. Conclusion: The use of 4DCT is the major source of an increase of the radiation (imaging) dose to patients. OBI and CBCT doses were small, but the accumulated dose associated with everyday verification need to be considered.

Shielding Effect of Radiation Protector for Interventional Procedure (중재적 방사선 분야 방호용구 차폐효과)

  • Ko, Shin-Kwan;Kang, Byung-Sam;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.213-219
    • /
    • 2007
  • The purpose of this study is to evaluate shielding effect of radiation protector for interventional radiologists in procedures by measuring inside and outside of radiation protector. In this study, we measured the radiation dose of 4 interventional radiologists during TACE and PTBD procedure for 4 month(2005.05-2005.09). Absorbed dose were measured by TLD placed underneath and over radiation protector such as Goggle, Thyroid protector, Apron and placed on the 4th finger of Hand. In addition, we measured background radiation dose in the control room using TLD. During TACE procedure, using 0.07 mmPb Goggle decreased average 53.8% of radiation dose rate in continuous fluoroscopic mode and decreased average 77.6% of radiation dose rate in pulse fluoroscopic mode. Using 0.5 mmPb Thyroid protector decreased average 88.9% of radiation dose rate in continuous fluoroscopic mode and decreased average 92.8% in pulse fluoroscopic mode. During PTBD procedure, using 0.07 mmPb Goggle decreased radiation dose rate average 62.7%, 87.9% by 0.5 mmPb Thyroid protector, 90.5% by 0.5 mmPb Apron. The average fluoroscopic time of PTBD was 6.14 min. shorter than TACE procedure, but radiation exposure dose rate of PTBD was 3 times higher in total body dose, and 40 times higher in hand dose rate than TACE. Interventional radiologists must wear thicker protector recommended over 0.5 mmPb. Also, they must use lead Goggle during interventional procedure. Abdomen dose decreased average 38.4% by drawing a lead curtain under the patient's table, therefore, they must draw a lead curtain to shield scattering ray. Radiation exposure dose decreased average 59.0% by using pulse fluoroscopic mode. So radiologists would better use pulse fluoroscopic mode than continuous fluoroscopic mode to decrease exposure dose.

  • PDF

The Effect of Adequate Radiation Shield Production for Radiation Worker (방사선 차폐체 제작을 통한 작업종사자 피폭 감소 방안)

  • Kim, Ki;Hong, Gun-Chul;Kwak, In-Suk;Park, Sun-Myung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.41-44
    • /
    • 2010
  • Purpose: Along with recent advances in PET/CT instrumentation and imaging technology, the number of patients has also been steadily increasing. This resulted in the increased radiation exposure to radiation workers in PET/CT rooms. In this study, we installed a radiation shield and investigated whether it could reduce radiation exposure to the workers and thus enhance job satisfaction. Materials and Methods: A radiation shield is composed of 5 cm thick lead and has a structure in which a radiation worker sits and watches a patient through lead glass while injecting radiopharmaceutical to the patient. Quarterly absorbed dose of radiation workers was measured using thermoluminescence dosimeters (TLD) and the results were compared for six months each before and after installation of the radiation shield. Exposure dose was also measured using a pocket dosimeter placed at the same location in the front and the back of the radiation shield. In addition, frequency of use of the shield and job satisfaction of radiation workers were investigated using a survey. Results: Quarterly absorbed dose of radiation workers was 2.70 mSv on average before installation of new radiation shield, whereas that dropped to 2.13 mSv after installation of radiation shield, reducing radiation exposure dose by 21%. Exposure dose on the front side of the shield was 61.2 R, whereas that on the back side of shield was 2.8 R. According to the survey, 85% of workers used the shield and were satisfied with the outcome: each radiation worker made injections to patients average of 6.5 times/day and preferred sitting to standing while injecting radiopharmaceutical to patients. Conclusion: Use of radiation shield reduced the exposure dose of radiation workers, which is the ultimate goal of radiation protection to minimize radiation exposure and is an appropriate method for the improvement of hospital working environment. Furthermore, we found that use of radiation shield not only relieves physical and psychological burden of radiation workers but also enhances job satisfaction. This result indicates that use of radiation shield is important for improvement of the radiation workers' job environment in terms of radiation protection.

  • PDF

The Investigation Regarding the Dose Change due to the Heterogeneity of Prostate Cancer Treatment with IMRT (전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰)

  • Yoon, Il-Kyu;Park, Jang-Pil;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Purpose: The pelvic phantom was fabricated in the following purposes: (1) Dose verification of IMRT plan using Eclipse planning computer, (2) to study the interface effect at the interface between rectal wall and air. The TLD can be inserted in the pelvic phantom to confirm the dose distribution as well as uncertainty at the interface. Materials and Methods: A pelvic phantom with the dimension of 30 cm diameter, 20 cm height and 20 cm thickness was fabricated to investigate the dose at the rectal wall. The phantom was filled with water and has many features like bladder, rectum, and prostate and seminal vesicle (SV). The rectum is made of 3 cm-dimater plastic pipe, and it cab be blocked by using a plug, and film can be inserted around the rectal wall. The phantom was scanned with Philips Brillance scanner and various organs such as prostate, SV, and rectal wall, and bladder wall were delineated. The treatment parameters used in this study are the same as those used in the protocols in the SNUH. TLD chips are inserted to the phantom to evaluate the dose distribution to the rectal wall (to simulate high dose gradient region), bladder wall and SV (to simulate the high dose region) and 2 spots in anterior surface (to simulate the low dose region). The TLD readings are compared with those of the planning computer (ECLIPSE, Varian, USA). Results: The target TLD doses represented as the prostate and SV show excellent agreements with the doses from the RTP within +/-3%. The rectal wall doses measured at the rectal wall are different from the those of the RTP by -11%. This is in literatures called as an interface effect. The underdosages at the rectal wall is independent of 3 heterogeneity correction algorithm in the Eclipse RTP. Also the low dose regions s represented as surface in this study were within +/-1%. Conclusion: The RTP estimate the dosage very accurately withihn +/-3% in the high dose (SV, or prostate) and low dose region (surface). However, the dosage at the rectal wall differed by as much as 11% (In literatures, the underdosage of 9$\sim$15% were reported). This range of errors occurs at the interface, for example, at the interface between lung and chest wall, or vocal cord. This interface effect is very important in clinical situations, for example, to estimate the NTCP (normal tissue complication probability) and to estimate the limitations of the current RTP system. Monte-carlo-based RTP will handle this issue correctly.

  • PDF