• Title/Summary/Keyword: 열 전달 해석

Search Result 461, Processing Time 0.036 seconds

Thermal Performance Analysis and Optimization of Two-dimensional Trombe Wall Solar System (2차원 축열벽형 태양열시스템의 열성능해석 및 최적화)

  • 이원근;유성연;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1609-1620
    • /
    • 1993
  • A Study on the trombe wall system, a kind of passive solar systems, has been performed numerically. The system is treated as a two-dimensional steady turbulent natural convection including constant heat source per unit area. The numerical code, "PHOENICS, " was employed to analyze this conduction-convection conjugated heat transfer. The general mode of the flow field was examined, and the exchange of mass between two recirculating flows is found to be the major mechanism of the heat transfer. It is shown that the performance is affected by the changes in the geometrical factors-the thickness of the wall, the width between the windowand the wall, and size of the vents. Further analysis has been performed to show the optimal geometry with regard to the last two factors.o factors.

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF

A Numerical Study of Radiation Effect under Smoke Movement in Room Fire (실내화재에서 연기거동에 미치는 복사영향에 대한 수치해석적 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.6-12
    • /
    • 2000
  • This paper describes the smoke movement of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of compartment space containing the radiation effect under smoke movement in room fire. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon $ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown reasonable agreement compared with the experimental data. On the other hand, a difference of a lot was found between the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire may be necessary in order to produce more realistic result.

  • PDF

Thermal Stress Estimation due to Temperature Difference in the Wall Thickness for Thinned Feedwater Heater Tube (감육된 급수가열기 튜브의 두께 방향 온도차이에 의해 발생하는 열응력 평가)

  • Dinh, Hong Bo;Yu, Jong Min;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • A major stress determining the remaining life of the tube in feedwater heater of fossil fuel power plant is hoop stress by the internal pressure. However, thermal stress due to temperature difference across the wall thickness also contributed to reduce the remaining life of the tube. Therefore, thermal loading must be considered even though the contribution of internal pressure loading to the stresses of the tube was known to be much higher than that of the thermal loading. In this study, thermal stress of the tubes in the de-superheating zone was estimated, which was generated due to the temperature difference across the tube thickness. Analytic equations were shown for determining the hoop stress and the radial stress of the tube with uniform thinning and for the temperature across the tube thickness. Accuracy and effectiveness of the analytic equations for the stresses were verified by comparing the results obtained by the analytic equations with those obtained from finite element analysis. Using finite element analysis, the stresses for eccentric thinning were also determined. The effect of heat transfer coefficient on thermal stress was investigated using series of finite element analyses with various values of heat transfer coefficient for both inner and outer surface of the tube. It was shown that the effect of heat transfer coefficient at outer surface was larger than that of heat transfer coefficient at inner surface on the thermal stress of the tube. Also, the hoop stress was larger than the radial stress for both cases of uniformly and eccentrically thinned tubes when the thermal loading was only considered without internal pressure loading.

Heat Conduction Analysis of Metal Hybrid Die Adhesive Structure for High Power LED Package (고출력 LED 패키지의 열 전달 개선을 위한 금속-실리콘 병렬 접합 구조의 특성 분석)

  • Yim, Hae-Dong;Choi, Bong-Man;Lee, Dong-Jin;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.342-346
    • /
    • 2013
  • We present the thermal analysis result of die bonding for a high power LED package using a metal hybrid silicone adhesive structure. The simulation structure consists of an LED chip, silicone die adhesive, package substrate, silicone-phosphor encapsulation, Al PCB and a heat-sink. As a result, we demonstrate that the heat generated from the chip is easily dissipated through the metal structure. The thermal resistance of the metal hybrid structure was 1.662 K/W. And the thermal resistance of the total package was 5.91 K/W. This result is comparable to the thermal resistance of a eutectic bonded LED package.

Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows (輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達)

  • 이종욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.551-560
    • /
    • 1988
  • Gas-particle two phase flow and heat transfer in a cavity receiving thermal radiation through selectively transparent walls have been analyzed by a finite difference method. Particles injected from the upper hole of the cavity are accelerated downward by gravity and exit through the lower hole while they absorb, emit and scatter the incident thermal radiation. Gas phase is heated through convection heat transfer from particles, and consequently buoyancy induced flow field is formed. Two-equation model with two-way coupling is adopted and interaction terms are treated as sources by PSI-Cell method. For the particulate phase, Lagrangian method is employed to describe velocities and temperatures of particles. As thermal radiation is incident upon horizontally, radiative heat transfer in the vertical direction is assumed negligible and two-flux model is used for the solution of radiative heat flus. Gas phase velocity and temperature distributions, and particle trajectories, velocities and temperatures are presented. The effects of particle inlet condition, particle size, injection velocity and particle mass rate are mainly investigated.

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.

Study on Estimations of Initial Mass Fractions of CH4/O2 in Diffusion-Controlled Turbulent Combustion Using Inverse Analysis (확산지배 난류 연소현상에서 역해석을 이용한 CH4/O2의 초기 질량분율 추정에 관한 연구)

  • Lee, Kyun-Ho;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.679-688
    • /
    • 2010
  • The major objective of the present study is to extend the applications of inverse analysis to more realistic engineering fields with a complex combustion process rather than the traditional simple heat-transfer problems. In order to do this, the unknown initial mass fractions of $CH_4/O_2$ are estimated from the temperature measurement data by inverse analysis in the practical diffusion-controlled turbulent combustion problem. In order to ensure efficient inverse analysis, the repulsive particle swarm optimization (RPSO) method, which belongs to the class of stochastic evolutionary global optimization methods, is implemented as an inverse solver. Based on this study, it is expected that useful information can be obtained when inverse analysis is used in the diagnosis, design, or optimization of real combustion systems involving unknown parameters.

Evaluation of Thermal Insulation and Hypothermia for Development of Life Raft (해상 구명정의 단열성능평가 및 저체온증 예측 수치해석 연구)

  • Hwang, Se-Yun;Jang, Ho-Sang;Kim, Kyung-Woo;Lee, Jang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.485-491
    • /
    • 2015
  • The technology review about risk of hypothermia of victim according to heat transfer characteristic of life raft and sea state can use accident correspondence of standing and sinking of ship. This study studied heat transfer characteristics required for the design of life raft and thermal insulation property analysis and evaluation methods. In addition, it is study for comprehend the risk of hypothermia and suggest analysis result that is experiment of thermal insulation property and body temperature property for decide of prediction the body temperature decline Thermal Analysis apply the finite element analysis method is comprehended the property of heat conductivity, convective effect of sea water and properties changes according to property of insulation material. it measure the heat flux with attach temperature sensor on body in order to comprehend the variation of body temperature with boarding a life raft experiment on a human body. This study validate results by comparing variation of temperature measured from experiment on a body with variation of temperature from finite element analysis model. Also, the criteria of hypothermia was discussed through result of finite element analysis.

Heat and Material Transport Analysis on the Head of Vehicle along the Flight Trajectory (비행궤적에 따른 비행체 앞부분의 열 및 물질전달해석)

  • 서정일;송동주
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.88-96
    • /
    • 2002
  • The CSCM Upwind method and Material Transport Analysis(MTA) have been used to predict the thermal response and shape changes for charring/non-charring material which can be used as thermal protection material(TPM) on blunt-body nose tip. We performed intensive flight trajectory simulations to compare 1-D MTA results with those of 2-D/Axisymmetric MTA by using MTAs and Navier-Stokes code. Theheat-transfer rate and pressure distribution were predicted at selected altitudes and wall temperature along the flight trajectory and the shape changes of blunt-body nose tip were predicted subsequently by using current procedure.