• Title/Summary/Keyword: 열회수형 환기장치

Search Result 7, Processing Time 0.024 seconds

A study on the acoustic performance evaluation of heat recovery ventilator with a sound absorbing duct (흡음덕트 부착 열회수형 환기장치의 음향성능 평가에 관한 연구)

  • Bae, Myung-Whan;Song, Jun-Young;Park, Hui-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.468-475
    • /
    • 2016
  • The purpose of this study is to investigate the acoustic problems of the conventional heat recovery ventilator and to suggest the methods of noise reduction from a heat recovery ventilator according to the installed location. The noise level, in this study, was measured and discussed as the parameters of size, wind volume and sound absorbing duct length for a heat recovery ventilator based on domestic and international related standards. It is found, as a result, that almost all of noise levels from the small and medium heat recovery ventilators without the sound absorbing duct in the anechoic chamber were higher than the noise standard value of 50 dB(A) regardless of the wind volume, and the noise levels went down when a sound absorbing duct was installed. In addition, the sound pressure level relative to frequency bands according to the length of sound absorbing duct was generally decreased, as the length of sound absorbing duct in the small and medium heat recovery ventilators was big, and the sound pressure level was generally increased, as the wind volume was great.

A Study on the Development of Heat-Recovery Ventilator for Preventing Freezing in a Cold Weather (혹한기 결빙 방지를 위한 열회수형 환기장치 개발에 관한 연구)

  • Park, Woo-Cheul;Kim, Il-Gyoum;Tae, Kyung-Eung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.593-598
    • /
    • 2018
  • Computational fluid dynamics was used to develop a heat-recovery ventilator for preventing freezing in cold weather. An optimal internal return damper was applied, and a prototype was made for frost and freezing experiments. A total of 16 models were used to design the optimal internal return damper with the maximum exhaust recirculation ratio. The exhaust recirculation ratio of the exhaust air to the outdoor air was 59.9-62.3%. The tests showed that frost and freezing did not occur at outdoor air temperatures of $-15^{\circ}C$ or higher in both exhaust recirculation operation and normal operation. However, at an outdoor air temperature of $-20^{\circ}C$, no freezing occurred in the outdoor air area when the internal return damper was opened by 45 degrees. Heat recovery ventilators for preventing cold weather frost and freezing should be operated in two operation modes: normal and exhaust recirculation mode. An operating algorithm was developed for the heat-recovery ventilator operating in normal mode when the outdoor temperature is higher than $-15^{\circ}C$ and recirculation mode when the temperature is lower.

A Cost Analysis of the Heat Recovery Ventilator under Various Condition (열회수형 환기장치의 운전조건에 따른 경제성 평가에 관한 연구)

  • Kang, Tae-Wook;Koh, Jae-Yoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Changes in building construction methods and repairing of older buildings have reduced infiltration rate. Synthetic materials, release airborne particles and uneven healthy odor are increased. For preventing pollutants introduce fresh outdoor air into the building, simply letting fresh outdoor air into building, however, Is not a cost-effective way to ventilation. When additional ventilation is added to an existing HVAC system, the heating and cooling equipment, often cannot handle the increased load. A HRV provides a way to minimize in energy costs while introducing fresh air to a building. In this study, the economical research of HRV, made of three types of materials, are conducted. Heat recovering characteristics are studied at seasonal outdoor air conditions based on the outdoor air property condition at, Seoul in 2002. As a results, the average sensible effectiveness is 0.75 in the sensible heat exchanger and average total effectiveness is 0.65 in the total heat exchanger. The pay back period of the sensible heat exchangers are $3.2{\sim}3.5$ year and it of total heat exchanger is 2.2 years.

A Study of the Indoor Thermal Environment in Apartment Buildings in Freezing Weather Operation of Heat Recovery Ventilator by CFD Simulation (CFD를 이용한 열회수형 환기장치 운전에 따른 혹한기 공동주택의 실내 열환경 검토)

  • Kim, Chang-Yeon;Park, Jong-Il;Kim, Dong-Gyu;Shin, Byong-Hwan;Kum, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.293-299
    • /
    • 2015
  • In Korea, it is the law that an apartment building which consists of over 100 households must have a ventilation system installed, either natural or mechanical. The heat recovery ventilator (HRV) is great way to reduce energy consumption. In this research we confirmed that based on site's construction plan and existing diffuser form, performed purpose CFD which simulates operation in temperatures below $-5^{\circ}C$ to circumstances of installation of an HRV in an apartment. As a result of this research we found that when the diffuser's aperture area was adjusted, the distribution of air temperature and residence time of air was more equally distributed and air temperature was higher, compared to when the diffuser has an identical aperture area. We also found that we are able to increase even more air temperature and air distribution of air temperature and residence time of air was even more equally distributed when run in parallel with a splitter damper.

An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement (실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

Thermal Performance of an Enthalpy Exchanger Made of Paper at Different Outdoor Temperatures and Humidities (외기 온·습도 변화에 따른 종이재질 전열교환 엘리먼트 성능에 관한 연구)

  • Kim, Nae-Hyun;Lee, Eul-Jong;Song, Kil-Sup;Oh, Wang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.697-702
    • /
    • 2010
  • An enthalpy exchanger in which heat and moisture transfer occur between the indoor and outdoor air operates at various outdoor conditions. In this study, the effect of the outdoor-air temperature and humidity on the performance of an enthalpy exchanger was experimentally investigated. An apparatus was specially-made to accurately measure the incoming and outgoing dry- and wet-bulb air temperatures as well as the flow rates. Tests were conducted in constant-temperature and constant-humidity chambers at different outdoor temperatures and humidities. It is shown that the effectiveness of latent-heat exchange increases as the relative humidity increases; further, this effect exhibited minimal dependence on the absolute humidity. However, the effectiveness of sensible-heat exchange is independent of both temperature and humidity